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Um Estudo do Modelo de Sel’kov em Derivada Fracionéaria:
Caputo x Riemann-Liouville
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Matematica-ICE/UFJF, Juiz de Fora, MG

O modelo de Sel’kov [4] descreve oscilagoes nas concentragoes de adenosina difosfato (ADP) e
frutose-6-fosfato (F6P) durante a glicolise. Em sua forma adimensional, as equagoes sdo

X'=—-X +aY +bX?Y (1)
Y' =V —aY - bX2%Y

onde X e Y representam as concentracoes de ADP e F6P, a > 0, b > 0 e V > 0 sdo parametros
cinéticos. O modelo gera oscilagoes sustentadas via ciclos limites, explicando flutuagoes observadas
experimentalmente. Estudos abordam sua estabilidade, bifurcacées, ciclos de relaxamento e exten-
soes com difusdo, analisando padroes espaciais e temporais. O modelo de Sel’kov é fundamental
para entender dindmicas nao lineares em sistemas bioquimicos.

O modelo de Sel’kov também foi usado para estudar a dindmica auto-oscilatéria de microssis-
mos, que sao vibracoes de baixa intensidade na superficie da Terra causada pela interagao entre
fissuras de diferentes escalas [3], onde explorou o uso de derivadas fracionérias para analisa-las.
Esses microssismos podem ser causados por fendmenos naturais, como ciclones e ondas oceénicas,
bem como por atividades humanas, como construgao.

L_“De1(X) = —X +aY +bX2Y
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—L_“De2(Y) =V —aY — bX2Y
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onde €D [y(t)] = F(1£ai) foﬂg (;/_/(5)% dr é a derivada de Caputo de ordem «; € (0,1] , i € {1,2}
e I'(.) a funcdo Gama, e o parametro positivo oy tem a dimensdo do tempo. Nesse contexto,
as derivadas de ordem fracionéaria sao fundamentais para descrever a influéncia da memoria na
evolugao das fissuras, sendo uma poderosa ferramenta para modelar regimes auto-oscilatorios.
Nos iremos apresentar uma outra forma de fracionalizar o modelo de Sel’kov, onde seguiremos

as ideias apresentadas nos trabalhos [1],[2].

X'=-—rX +aY +bX2Y —r§te D71 (entX)
I __ 2 az —a1t Hl—a ayt (3)
Y= V- a1Y —bX?Y —a5?e D=2 (e"?Y)

onde D'~ [y(t)] = F(Li) % fg (t_yT()Tl),ai dr, é a derivada fracionéria no sentido de Riemann-Liouville
de ordem 1—q; € [O, 1} Comri+re =1 s 01460, =1 , a1 = abi e as = aby com 0 < T‘1,7’2,01702 < 1.
Os modelos (2) e (3) possuem um operador néo local que incorporam os efeitos de memoria e per-
turbam a natureza do modelo classico de Sel’kov (1), além disso, eles embutem novos parametros,
como a ordem da derivada fracionaria e no caso (3) ainda temos uma fungdo exponencial e os

pardmetros 712 e 01 2.
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Nosso objetivo é estudar essas perturbagoes provocadas por estes operadores e seus parametros.
Iniciaremos com uma anélise nos valores dos pontos criticos. Observe que os valores dos pontos
criticos nos modelos (1) e (2) sdo os mesmos independente dos parametros a2 € 01 2.

v

Modelos (1) e (2): Xo, = X, =V Y, =Y., = v
a

Para o Modelo (3) o equilibrio é definido pela raiz real do polinémio ctabico (P(X,,) = 0):

v a Va v
P(Xe,) = X2 — X2+ —Xey—— € Yo, = ——r,
r b rb ab +bXz
1— 1— R
onde r =711 +7r3'r;" " e 6 = 01 + 05260, “*. Observe que para § =1 e r =1 o valor do equilibrio
dos trés Modelos sdo os mesmos e isto ocorre para os casos em que as ordens o 2 = 1 das derivadas
fracionérias, ou quando ry = ro = 6, = 05 = % e neste caso vale para qualquer valor de ay 2 € (0, 1).
Parametros: @, =08 «,=08,r =05, Parametros: @, =075 a,=085,r, =03e6, =05
6,=05e PC.: Xe= 0.6442 Ye= 1.761. Modelos: (1) preto, (2) azul , (3) vermelho. Modelo (2) azul: Xe=0.6442 Ye=1.761
) Modelos: (1) preto, (2) azule (3) vermelho. b 22 Modelo (3) "i""e"w Xe=0.7436 Ye= 1.435
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Figura 1: (a) Plano de Fase; (b) Solugoes do caso (a); (c) Plano de Fase Fonte: Autor.

Portanto, as derivadas fracionarias afetam a dindmica auto-oscilatoria o que proporciona uma
nova analise da dinamica do modelo Sel’kov. Além disso, com os novos operadores e parametros, é
possivel estudar os pontos criticos e a dinamica das oscilagoes, constituindo uma forma alternativa
de analisar o modelo Sel’kov em derivadas fracionéarias.
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