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Neste trabalho, apresentamos a metodologia de transformada de Laplace para encontrar solu-
ções das equações diferenciais com retardo contínuo, na qual a função de densidade de probabilidade
beta desempenha um papel fundamental.

Diz-se que a variável aleatória X : Ω → [0, 1] tem distribuição beta, se sua função de densidade
de probabilidade for dada por [1]:

fX(x; p, q) =
1

B(p, q)
xp−1(1− x)q−1, x ∈ [0, 1], (1)

em que p, q > 0 e B(p, q) é a função beta.
As equações diferenciais com retardamento são um tipo de equação diferencial, em que a deri-

vada, em um instante t, depende da função incógnita em um instante anterior, t − τ , com τ > 0,
denominado retardamento [2].

y′(t) = f(t, y(t), y(t− τ)), com t ≥ 0, (2)

Por exemplo, a equação diferencial:

y′(t) = y(t− 1), (3)

é um caso de equação diferencial com retardo discreto, sendo τ = 1. Segundo [3], o modelo que
considera o caso em que τ é contínuo (ou distribuído) que assume a forma da EDO (2) é:

y′(t) =

∫ t

−∞
y(τ)g(t− τ)dτ, (4)

com g(t) como um fator de ponderação que indica a importância que deve ser dada ao tamanho de
y em momentos anteriores para determinar o efeito atual, sendo denominado como a memória da
equação [3]. Aqui no trabalho, utilizamos como memória g(t) a função densidade de probabilidade
beta e empregamos as transformadas de Laplace para encontrar a solução da equação diferencial
com retardamento contínuo. Para isso, aplicamos a transformada de Laplace em ambos os lados
da Equação (4).

L{y′(t)} = L
{∫ t

−∞
y(τ)g(t− τ)dτ

}
. (5)

Seja L{y(t)} = Y (s). Aplicando a propriedade da derivada de Laplace e a transformada da
convolução à Equação (5) e reorganizando para obter Y (s) , temos [4]:
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2

Y (s) =
y(0)

s−G(s)
, (6)

Agora, vamos resolver um caso específico em que g(t) é a distribuição de probabilidade beta
com parâmetros p = 2 e q = 1, conforme a Equação (1). Assim, temos g(t) = 2t. Aplicando
G(s) = L{2t} = 2

s2 na Equação (6):

Y (s) =
y(0)s2

s3 − 2
. (7)

Aplicando o método das frações parciais para encontrar a transformada inversa de (7), temos:

y(t) =
y0
3
e

3√2t +
3
√
2

3
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2−2tsen(

√
3

3
√
2−4t) +

2

3
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(8)
A seguir, apresentamos a solução y(t), Equação (8):

Figura 1: Equação (8), com y(0) = 1. Fonte: autor (2025).

Os operadores fracionários possuem memória, conforme descrito pelas distribuições beta [1].
Nesse sentido, a Equação diferencial (4), quando g(t) é uma distribuição beta, apresenta uma
relação natural com as equações diferenciais fracionárias baseadas na derivada de Caputo. Estamos
investigando essa relação ao comparar equações diferenciais com retardo e o cálculo fracionário.
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