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Neste trabalho, apresentamos a metodologia de transformada de Laplace para encontrar solu-
¢oes das equagoes diferenciais com retardo continuo, na qual a fun¢ao de densidade de probabilidade
beta desempenha um papel fundamental.

Diz-se que a variavel aleatoria X : Q — [0, 1] tem distribuigao beta, se sua fungao de densidade
de probabilidade for dada por [1]:

P71 =)z e 0,1, (1)

em que p,q > 0 e B(p,q) é a funcao beta.

As equagoes diferenciais com retardamento sao um tipo de equacao diferencial, em que a deri-
vada, em um instante ¢, depende da fung¢ao incégnita em um instante anterior, t — 7, com 7 > 0,
denominado retardamento [2].

y'(t) = ft,y(t),y(t — 7)), com ¢ >0, (2)

Por exemplo, a equagao diferencial:

y'(t) =yt —1), (3)

é um caso de equagao diferencial com retardo discreto, sendo 7 = 1. Segundo [3], o modelo que
considera o caso em que 7 € continuo (ou distribuido) que assume a forma da EDO (2) é:

t
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com ¢(t) como um fator de ponderagao que indica a importancia que deve ser dada ao tamanho de
1y em momentos anteriores para determinar o efeito atual, sendo denominado como a memoria da
equagdo [3]. Aqui no trabalho, utilizamos como memoéria ¢(t) a fungdo densidade de probabilidade
beta e empregamos as transformadas de Laplace para encontrar a solugao da equacgao diferencial
com retardamento continuo. Para isso, aplicamos a transformada de Laplace em ambos os lados
da Equagao (4).

ﬁwvnzﬁ{/tyvmu—ﬂm}. B

Seja L{y(t)} = Y(s). Aplicando a propriedade da derivada de Laplace e a transformada da
convolugao a Equacao (5) e reorganizando para obter Y (s) , temos [4]:
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Agora, vamos resolver um caso especifico em que g¢(t) é a distribuicio de probabilidade beta
com parametros p = 2 e ¢ = 1, conforme a Equagdo (1). Assim, temos ¢(t) = 2t. Aplicando
G(s) = L{2t} = % na Equagao (6):

Y(s) = . 7
(5) = 525 (7)
Aplicando o método das fragoes parciais para encontrar a transformada inversa de (7), temos:

y(t)y =2 32+£ Vet gen( 332*4t)+§y06V33 en(3V/2-4t) + \ﬁ 0e V2 sen(3v21t)
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(8)
A seguir, apresentamos a solucdo y(t), Equacao (8):
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Figura 1: Equagcao (8), com y(0) = 1. Fonte: autor (2025).

Os operadores fracionérios possuem memoria, conforme descrito pelas distribuigoes beta [1].
Nesse sentido, a Equacao diferencial (4), quando g(t) é uma distribuicdo beta, apresenta uma
relacao natural com as equagoes diferenciais fracionarias baseadas na derivada de Caputo. Estamos
investigando essa relagdo ao comparar equagoes diferenciais com retardo e o calculo fracionéario.
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