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Os sistemas de impacto são um caso especial dos chamados sistemas híbridos. Ver [1] e [3].
Considere um oscilador do tipo massa-mola com uma órbita periódica estável. Agora considere
um anteparo posicionado na vizinhança da órbita periódica. Se o anteparo intercepta tal órbita,
a dinâmica torna-se bastante rica. Para a tangência da órbita é necessário que o contato seja de
ordem par com derivada positiva: uma dobra visível.

Seja uma aplicação contínua h ∈ Cr
(
M2n;R

)
, n ∈ N e r ⩾ 1 suficientemente grande; regular em

0. Então, pelo Teorema da Função Implícita, ∂H = h−1 ({0}) é uma subvariedade de codimensão
um. Pode-se definir o aberto H+ = h−1

(
R∗

+

)
.

Definição 0.1. Seja o par (f,R) um sistema de impacto tal que o campo vetorial f é dado por
f : H+ → TH+ e a aplicação reset R é dada por

Id +wLfh, (1)

Id sendo a identidade em ∂H e w uma aplicação em ∂H; definida em ∂H−, ∂H± = ∂H ∩
(Lfh)

−1
(R±).

Considere que (f,R) tem um contato de ordem 2n em x∗ ponto periódico, para o parâmetro
de bifurcação µ = µ∗, ou seja,

(
Lk
fh

)
(x∗, µ∗) = 0, 0 ⩽ k < 2n e

(
L2n
f h

)
(x∗, µ∗) > 0. Em

suma, tem-se uma órbita periódica hiperbólica estável visitando a singularidade xcr = x∗ para o
parâmetro de bifurcação µ∗ (caso não perturbado).

Teorema 0.1. O conjunto
{
grad

(
Lk
fh

)
, 0 ⩽ k < 2n

}
é linearmente independente em (x∗, µ∗) ⇒(

L2n−1
f h

)
({0}) é transversal a h−1 ({0}) e a órbita Sxcr, que visita a singularidade xcr.

A ideia principal da prova deste resultado é o Teorema da Função Implícita aplicado à função
Φ =

(
h, ...,L2n−1

f h
)
. Note que Φ(x∗, µ∗) = 0 ∈ R2n. A condição de independência linear surge daí,

implicando que ∃xcr = xcr(µ) singularidade. Note que a condição também assegura a genericidade
de todas as singularidades de ordem menor que 2n.

Como a órbita periódica é transversal a Σ =
(
L2n−1
f h

)
({0}) ∩ H− em x∗ para o caso não

perturbado µ∗, Σ pode ser definido como uma seção de Poincaré onde define-se uma aplicação de
primeiro retorno Π( . , µ) : Σ → Σ tal que Π(x∗, µ∗) = x∗.

Ao perturbar o parâmetro de bifurcação µ de modo a deslocar o ponto fixo x(µ) de Π da
singularidade xcr, duas situações são possíveis: h (x(µ)) > 0, que é trivial; ou h (x(µ)) < 0 onde o
ponto fixo é virtual já que o fluxo não está definido em H− = h−1

(
R∗

−
)
. Este segundo caso é o de

interesse aqui.
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Considerando o fluxo virtual em H−, define-se uma aplicação de primeiro retorno corrigida Ψ̃ =

= Ψ
1−sgn◦h

2 ◦Π, Ψ = φ−∆+ ◦R ◦ φ−∆− , ∆± : ∂H± → R, x 7→ min
{
t > 0 : φ−t(x) ∈ Σ

}
(2)

Sabemos que tal aplicação é Cr por partes. [3] mostra que ela é Hölder-contínua: Cα com α(1) = 1
2 ,

α(2) = 3
4 e α(n) = 2

n para n ⩾ 3. Então ela é uniformemente contínua, porém nunca Lipschtz,
pois αmax = 3

4 < 1.

Teorema 0.2. Se existir um aberto Ω tal que o grau de Brower x∗ ∈ Ω e deg
(
Ψ ◦Π− Id,Ω, 0

)
̸= 0,

então ∃x(µ) ponto fixo persistente de Ψ̃ tal que x(µ∗) = x∗.

A idéia da prova é que há um zero de Ψ ◦ Π − Id no problema não perturbado com grau de
Brower não nulo. Como o grau é preservado por homotopia, no problema perturbado o grau é o
mesmo e, portanto ainda há um zero. Ver [2].

Devemos notar que como a órbita do sistema não perturbado é hiperbólica e estável, todos
os autovalores estão no interior do círculo de raio unitário. Seja a aplicação Π − Id. Como
os autovalores complexos surgem aos pares conjugados, o sinal do determinante é dado pelos
autovalores reais. Como Σ tem codimensão um, sua dimensão é ímpar, fazendo com que tenhamos
uma quantidade ímpar de autovalores reais. Como estes também estão no interior do circulo de
raio unitário, temos uma quantidade ímpar de autovalores negativos relacionados a linearizada de
Π − Id e, portanto, determinante negativo e grau de Brower −1. A hiperbolicidade garante que
não haverá inversão para h > 0. Se a condição do teorema for satisfeita, o número de autovalores
negativos associado a Ψ ◦ Π− Id também é ímpar, fazendo com que o determinante seja também
negativo. Neste caso o grau de Brower é −1 ̸= 0. Note que Ψ̃ é uniformemente contínua. O caso
não perturbado tem um ponto fixo x(µ∗) = x∗. Aplicando uma perturbação homotópica e, como
o grau de Brower é preservado, então teremos um ponto fixo em x(µ) no caso perturbado.

Teorema 0.3. O ponto fixo x(µ) é instável para µ suficientemente próximo a µ∗.

A idéia aqui é que como a aplicação do primeiro retorno não é Lipschtz, a norma da derivada
de Ψ̃ não fica limitada na vizinhança da singularidade. Assim, pelo menos um autovalor estará
fora do círculo de raio unitário no plano complexo.
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