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Intuitivamente, uma equação diferencial parcial (EDP) é dispersiva quando suas soluções de
onda se espalham no espaço à medida que o tempo varia. Para uma definição mais formal, considere
uma EDP linear

F (∂x, ∂t)u(x, t) = 0, (1)

onde F é polinomial nas derivadas parciais. Estamos interessados em soluções planas da forma

u(x, t) = Aei(kx−ωt), (2)

onde A é a amplitude, isto é, a altura da onda, k é o número de ondas e ω é a frequência, que
indica o número de oscilações em uma unidade de tempo. Todas as constantes são reais.
Dessa forma, u será solução de (1) se, e somente se, F (ik, iω) = 0. Essa relação é chamada de
relação de dispersão e caracteriza o movimento de uma onda plana. Assumiremos ω como uma
função real de k, ou seja, ω = ω(k).
Para a maioria dos casos, é apropriado restringir a atenção aos valores de k que são reais e, nesse
caso, ω pode ser real ou complexo, dependendo da EDP. Suponha que uma EDP admita uma
solução (2). Então, qualquer crista individual dessa onda se move à velocidade dada por

Vf (k) = −ω

k
. (3)

Esta expressão é conhecida como velocidade de fase. Contudo, no início do século XX, percebeu-
se que a energia das ondas se propaga com velocidade diferente, dada por

Vg =
dω

dk
, (4)

que é chamada de velocidade de grupo.

Definição 1. Dizemos que uma EDP linear é dispersiva se ω(k) é uma função real e sua velo-
cidade de grupo é não constante, ou seja, ω′′(k) ̸= 0. Uma EDP não linear será dispersiva se sua
parte linear for dispersiva.

Exemplo 1. A equação de Kawahara é dada por

ut + ux + κuxxx + ηuxxxxx + uux = 0. (5)
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onde κ e η são números reais tais que κ ̸= 0 e η < 0. Essa equação modela ondas dispersivas em
fluidos. Note que a parte linear dessa equação é ut + ux + κuxxx + ηuxxxxx. Logo:

−iωAei(kx−ωt) + ikAei(kx−ωt) + κ(ik)3Aei(kx−ωt) + ηA(ik)5ei(kx−ωt) = 0

Aiei(kx−ωt)
(
−ω + k − κk3 + ηk5

)
= 0

ω(k) = k − κk3 + ηk5

daí segue que ω′′(k) = −6κk + 20ηk3, ou seja, a velocidade de grupo não é constante e, portanto,
a equação de Kawahara é dispersiva.

Definição 2. Uma função f : C → C é dita inteira se for diferenciável em todos os pontos de C,
ou seja, se for holomorfa em todo o plano complexo.

Funções polinomiais, exponenciais, trigonométricas e hiperbólicas são exemplos de funções in-
teiras.

Definição 3. Uma transformação de Möbius é uma função racional da forma

f(z) =
az + b

cz + d
,

onde a, b, c, d ∈ C e ad− bc ̸= 0.

Uma de suas aplicações está na teoria de equações diferenciais parciais, como a equação de
Kahawara. No estudo das soluções estacionárias dessa equação, as Transformações de Möbius
aparecem naturalmente ao analisar funções inteiras associadas ao problema. Determinar quando
uma função é inteira pode ser reduzido à verificação da existência de certas Transformações de
Möbius, o que simplifica a caracterização dos intervalos para os quais existem soluções estacionárias
não triviais.

Dessa forma, as propriedades das Transformações de Möbius não são apenas ferramentas abs-
tratas da análise complexa, mas também desempenham um papel importante na resolução de
problemas aplicados, como na estabilidade e comportamento de ondas descritas pela equação de
Kawahara.

Neste sentido, foram utilizadas as referências [1] e [3] para um estudo inicial das transformações
de Moebius e equações dispersivas. Além do estudo detalhado de [2], estamos interessados também
em avançar nos problemas em aberto deixados no artigo.
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