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Um modelo de controle ótimo com difusão para uma
população de mósquitos
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Neste trabalho, analisamos um problema de controle ótimo associado ao seguinte sistema de
equações diferenciais parciais relacionado ao estudado em Calsina e Elidrissi em [2]:

ut(a, t) + ua(a, t) +

∫
Ω

[m1(r)H3(x, t)dx+ µ1(c)]u(a, t) = 0 (a, t) ∈ Q,

vt(x, t)− α∆v(x, t) +m2(r)v(x, t) + µ2(L1(c))v(x, t) = u(l, t) (x, t) ∈ ΩT ,
rt(x, t)− (g(r)− h(L2(u, v)))r(x, t) = 0 (x, t) ∈ ΩT

u(0, t) =

∫
Ω

B(x, t)v(x, t)dx t ∈ (0, T ),

u(a, 0) = u0(a) a ∈ (0, l),
v(x, 0) = v0(x) x ∈ Ω,
r(x, 0) = r0(x) x ∈ Ω,
v(x, t) = 0 (x, t) ∈ ∂ΩT .

(1)

Este sistema modela a dinâmica de uma população de mosquitos, considerando a interação entre
a forma imatura (aquática) e a forma adulta (alada) dos mosquitos, além da quantidade de recursos
disponíveis para a sobrevivência. Na forma adulta, os mosquitos são distribuídos espacialmente
em uma região Ω aberta e conexa do Rn.

A primeira equação governa a dinâmica estruturada por idade da população imatura de mos-
quitos u = u(a, t), onde a representa a idade, e t, o tempo; aqui, a ∈ (0, 1) , onde l > 0 é denota a
idade de maturação, ou seja, a idade em que um indivíduo aquático se torna adulto; T > 0 é dado
e denota o tempo máximo de interesse; denotamos Q = (0, l)× (0, T ).

A segunda equação representa a dinâmica da população de mosquitos adultos (alados), v =
v(x, t), x ∈ Ω, que como em Calsina e Elidrissi [2], não é estruturada por idade.

A terceira equação governa a variação Ω da quantidade de recursos disponíveis na região Ω no
tempo t.

Temos ainda que as funções m1, m2, µ1, µ2 são as taxas de mortalidade enquanto que B é a
taxa de natalidade, u0, vo, r0 são funções não negativas, H0, H1, H2 ∈ L∞(Q) com H0, H1, H2 ≥ 0
e L1(c), L2(u, v) são os operadores integrais:

L1 : U → R e L2 : L∞([0, T ], L1(0, l))× L∞([0, T ], H1
0 (Ω)) → R,

L1(c)(t) =

∫ l

0

c(a, t)H0(a, t)da,

L2(u, v)(x, t) =

∫ l

0

u(a, t)H1(a, t) + v(x, t)H2(a, t)da,

Esta pesquisa trata da existência de um controle ótimo c∗ ∈ U com

F(c∗) = min{F(c) : c ∈ U}. (2)
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onde o funcional F(c) a ser minimizado é

F(c) = ρ0

∫ T

0

∫ l

0

G(a, u(a, t))dadt+ ρ1

∫ T

0

∫ l

0

|c(a, t)|p1dadt

+ρ̃1
∫ T

0

∫ l

0
|ct(a, t)|p̃1dadt+ ρ1

∫ T

0

∫ l

0
|ca(a, t)|p1dadt

+ρ2

∫ T

0

∫
Ω

|v(x, t)|p2dt+ ρ3

∫ T

0

∫
Ω

|r(x, t)|p3dt,

onde (u, v, r) é a solução do sistema e (1) associado ao controle c. Este controle pode ser interpre-
tado como um agente químico que atua sobre os mosquitos e F(c) como o custo desta intervenção.

Consideramos G : (0, l)×R → R uma função limitada inferiormente tal que G(a, y) é mensurável
em a para y fixo, contínua e convexa em y para cada a fixo. Além disso, existe um q > 1 e constantes
não negativas A e B tais que

G(a, y) ≤ A+B|y|q. (3)

As constantes ρ1, ρ̃1, ρ1 > 0 e ρ2, ρ3 ≥ 0, os expoentes p1, p̃1, p1, p2, p3 ≥ 1 são dados e U
é definido como sendo o conjunto dos controles.

Na primeira parte do trabalho, nos concentramos na questão da existência, unicidade e na busca
por estimativas das soluções para o sistema em questão. A principal ferramenta que utilizamos foi
o Teorema do Ponto Fixo de Banach. A abordagem foi aquela adotada por Silva Filho e Boldrini
em [4]. Mas aqui a populção é distribuída em uma região Ω, gerando assim um sistema de segunda
ordem, enquanto que em [4], não foi considerada a distribuição espacial dos mosquitos. Dessa forma,
devido à natureza da segunda ordem do sistema, foi necessário complementar nossa abordagem
com resultados de regularidade elíptica, o que nos permitiu obter estimativas importantes para a
garantia da existência e unicidade das soluções para o sistema (1).

Na segunda parte do trabalho, foi mostrado a existência de um controle ótimo associado a este
sistema. A técnica utilizada também foi a mesma usada por Silva Filho e Boldrini em [4] . Foram
aplicadas sequências minimizantes através de estimativas obtidas das soluções do sistema. Por
outro lado, a convexidade de G, resultados de compacidade e a estimativa (3) foram cruciais na
obtenção de estimativas adicionais, visto que aquelas do sistema (1) não foram suficientes para a
passagem ao limite.

Para finalizar, apresentamos aqui outras refêrencias importantes onde foram obtidos resultados
que se relacionam a este trabalho são [1] e [3].
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