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O astréonomo Simon Newcomb e o fisico (engenheiro elétrico) Frank Benford perceberam, com
uma diferenga de quase 60 anos, que folhas das antigas tabuas de logaritmos possuiam suas paginas
associadas a ntimeros iniciados em 1 bem mais desgastadas do que a maioria. Supuseram, entao, que
alguns conjuntos de dados de certos fendmenos observados, por uma razio ainda nao muito clara
para ambos, seguiam uma distribui¢do para seus primeiros digitos, implicando maior frequéncia
de niimeros iniciados em 1 em relagdo a ntimeros iniciados em 8 ou 9. Essa distribui¢ao ficou
conhecida como Lei de Newcomb-Benford (NB)[9, 1].

Com o tempo, observou-se que um nimero enorme de conjuntos de dados segue NB, dando um
carater meio 'mégico’ a distribuigdo [6]. A partir principalmente das anélises de Mark Nigrini [10],
NB passou a ser aplicada na detecgao de fraudes contébeis, entre outras. Recentemente, a partir
da invariancia por mudanga de base em NB [4], comecamos a estudar possiveis fraudes (eleitorais)
utilizando NB em outras bases numéricas [2, 8, 3].

Py(d) = log, (1 + ;) . (1)

A equagdo acima descreve a frequéncia esperada (probabilidade) P(d) de nameros iniciados com
o digito d em um conjunto de dados escritos na base b que segue a distribui¢ao de Newcomb-Benford
(NB).

Neste trabalho, observamos a emergéncia da distribuigao de Newcomb-Benford a partir de
simulacoes simples em sorteios de um conjunto discreto de numeros, em outras palavras, a partir
de um dado de n lados com uma distribuicao de probabilidade qualquer, conseguimos chegar a NB.

A ideia bésica é sortear um conjunto de dados que comece com digito 1 a b — 1 escritos na base
b. Cada dado é obtido a partir do produto de n sorteios de modo que o resultado final sera sempre
dividido por b’ garantindo que o resultado esteja no intervalo I = [1,b — 1).

A seguir, um exemplo prético na base 3.

Como primeiro exemplo, fizemos o sorteio de dois ntimeros, 1 ou 2 com respectivas proba-
bilidades p e 1 — p, algo como um cara e coroa. Esse sorteio se repete N vezes e, ao numero
obtido, multiplica-se o anterior. Cada vez que a soma ultrapassa 3, dividimos o resultado por 3.
O procedimento pode ser entendido como (partindo de R = 1):

1. Sorteia-se o k-ésimo ntmero x(k); 2. Multiplica-se ao resultado acumulado R = Rx*xz(k); 3.
Se R > 3 entdo R = R/3 - garante R € [1,3); 4. Retorna para k + 1 enquanto k < n; 5. Quando
k = n, escreve-se R final e extrai-se o primeiro digito;

Obtemos, com o procedimento acima, um nimero do nosso conjunto de dados partindo das
condigoes iniciais p(x(k) = 1) = 0,2 e p(z(k) = 2) = 0,8. A rotina foi repetida 750 vezes e os
dados plotados na Fig.1. A abscissa corresponde ao ntimero n do procedimento descrito. As linhas
tracejadas correspondem as proporgoes esperadas segundo Eq.1. Percebe-se, ainda, que quase
todos os dados estao dentro de duas vezes o desvio padrao, representado pelas linhas vermelhas
pontilhadas.
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Figura 1: Evolugao da Propor¢ao do Digito 1 na base 3. Fonte: Original dos autores.
Tal processo foi repetido em outras bases com a regra de sortear sempre os numeros 1,--- ,b—1

e estudar o problema na base b. Para estudar um dado de 6 lados fazemos, naturalmente, o
procedimento acima na base 7. Resultados obtidos em outras bases foram incluidos no poster
apresentado no CNMAC - 2025. A simulagdo como um todo representa, de maneira lidica, a
emergéncia da NB conforme previsto no chamado Teorema do Limite Central - Médulo 1 [7, 5].
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