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Peptides are known to exhibit significant antiviral properties. This work focuses on the DENV-
2 peptide (CGYGLC) in aqueous solution, notable for its anti-Dengue potential. Understanding
its conformational dynamics is vital for assessing its structural and functional behavior. Molec-
ular dynamics (MD) is commonly used for such studies, but is computationally intensive and
time-consuming. To address this, we investigate the simulation of a reduced fraction of the total
simulation time.

We employ the Variational Approach for Markov Processes (VAMP) to analyze the peptide’s
conformational dynamics. The initial structure of DENV-2 was obtained using AlphaFold2 [2]
and simulated for a total of 10 ns (equivalent to 50000 frames) with AMBER [1]. Dihedral angles
define the polypeptide chain’s spatial conformation and are key to a peptide’s secondary and
tertiary structure. These angles are derived by transforming Cartesian coordinates from molecular
dynamics simulations. Torsion angles (¢ and ¢) are favored because of their lower dimensionality,
which is more closely related to the intrinsic dynamics of the system. Each dihedral angle is
the torsion between four consecutive atomic positions. Their temporal evolution is modeled as a
multivariate time series:

O(t+1) = F(2(t) +n(t) (1)

where ® = (¢ )T, with ¢ = (¢1,...,Pm_1) and ¥ = (¥1,...,%m_1), such that Vi), ¢; € [—, 7.
Thus, ® € [—r,7]2(™~1) where m is the peptide’s amino acid sequence length. 7(t) is a noise term
at time ¢, and F' is an unknown non-linear function.

As the state variables are atomic coordinates, we determine the evolution of the expected value
of an observable function ® applied to these variables, E[®(x:1.)], to be:

E [®(111,)] = K'E[® ()] (2)

Here, 7 is the lag time, ensuring Markovian dynamics by capturing the slowest time scales. Matrix
K, the best Koopman operator approximation in the observable-generated subspace, is found via
the VAMP fundamental theorem [4] as K = Cy3'Co;. The canonical correlation matrices are
Coo = E4[®(x1)®(2)T] (autocorrelation at t), Co1 = E[® () ®(z44,)T] (time-lagged correlation
linking initial and future states), and C11 = By, [® (244, )®(24,)T] (autocorrelation at t + 7).
To predict dihedral angles at each time step (shifted by lag time 7 = 0.002 ps, or 1 frame),
a Koopman operator is used. Let {®;}7=} be the molecular dynamics data and {®;}7_, the

fernandoalbrizzi89@gmail.com
2gayosogabs00@gmail.com
3jose.colbes.sanabria@gmail.com
4cschaer@pol.una.py
Samaury@dcc.ufrj.br

010099-1 © 2026 SBMAC



Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

Koopman predictions. The prediction follows [3]:
Oy e = (V) T'RUT (D — pro) + 11t (3)

where <i>t+7 is the predicted observable at t+7; ®, is the system state at ¢; pg and py are mean state
variable values at initial time and time ¢, respectively. U, ¥,V are matrices from the Singular Value
Decomposition (SVD: right singular vectors, singular values, left singular vectors, respectively), and
(VT)~1 is the inverse transpose of V.
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Figure 1: First Case of Prediction. The lag time is 7 = 0.002 ps. Source: Authors.

Figure 1 superimposes the molecular dynamics simulation and the Koopman operator prediction
(blue). The dihedral angle dynamics (red) are accurately captured for this peptide when using the
same 7 for simulation and prediction.Further analyses are required to adapt the technique for
accurate predictions over larger time intervals.
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