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Durante a pandemia da COVID-19, modelos epidemiológicos foram propostos, e com as carac-
terísticas singulares da doença, a estimação de parâmetros desse modelo foi muito importante para
facilitar o uso. O objetivo era modelar e prever a propagação da doença, auxiliando na tomada de
decisões para medidas de controle [2].

Neste artigo, propõe-se uma metodologia de estimação de parâmetros epidemiológicos, baseados
em redes neurais convolucionais (RNC) [2–4]. Para otimizar o uso das RNC que reconhecem
imagens, a evolução temporal dos compartimentos de uma doença é transformada em uma imagem.
A rede é então treinada para ter como saída os parâmetros do modelo epidemiológico em questão.
E com esses parâmetros, é possível replicar a evolução temporal dos compartimentos, usada como
entrada da rede. A estimação desses parâmetros não é importante somente para prever a evolução
temporal da doença, mas também para trazer respostas sobre o tempo de incubação da doença,
período de infectividade, entre outras características da doença.

O modelo epidemiológico considerado é o modelo SIR (Suscetível-Infectado-Recuperado) apre-
sentado em [1]. Nesse modelo, a população é baseada em um autômato celular (AC) bi-dimensional
de lado N , em que cada célula representa um indivíduo que está em um dos compartimentos da
doença. Cada indivíduo interage com C vizinhos dentro de um raio de Moore r de forma pro-
babilística definida no artigo. Indivíduos suscetíveis tem uma probabilidade de infecção dada por
Pi = 1 − e−KnI , em que nI representa o número de vizinhos infectados e K é um fator de in-
fectividade do modelo. Indivíduos infectados podem se curar da doença com probabilidade Pc,
se tornando um indivíduo recuperado, ou morrer pela doença com probabilidade Pd. Indivíduos
suscetíveis e recuperados podem morrer de causas naturais com probabilidade Pn. Indivíduos que
morrem são substituídos por indivíduos suscetíveis para manter a população constante, que é uma
aproximação razoável para um curto período de tempo.

A evolução temporal dos estados S, I e R vinda da simulação do modelo é usada como entrada
da rede. Dessa forma, 1000 simulações são realizadas com um AC de lado N = 500 e condições
iniciais S(0) = 0,995, I(0) = 0,005 e R(0) = 0 como concentrações normalizadas dos estados, que
são aleatoriamente distribuídos no reticulado. Para cada uma das 1000 simulações os parâmetros
do modelo SIR são aleatoriamente escolhidos nos intervalos C ∈ [1, 10], r ∈ [1, 10], Pc ∈ [0,01, 1],
Pd ∈ [0,01, 1], Pn ∈ [0,01, 1], e K ∈ [0, 2].

A partir da evolução temporal dos estados da doença por 484 passos de tempo, uma imagem
é construída para servir de entrada da RNC. Dessa forma, os estados S, I e R normalizados são
considerados como sendo os canais R (vermelho), G (verde) e B (azul) de uma imagem no padrão
RGB, onde a intensidade de cada canal representa a fração normalizada de indivíduos em cada
estado. Iniciando no centro da imagem, faz-se uma espiral em sentido anti-horário, na qual cada
pixel da imagem representa a combinação RGB dos estados epidemiológicos correspondentes ao
respectivo tempo de simulação. Esse processo continua até preencher completamente uma imagem
de tamanho 22× 22, totalizando 484 pixels.
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A rede convolucional usada possui uma arquitetura composta por uma camada de entrada de
dimensão 22× 22× 3, seguida por uma camada convolucional com 128 filtros, kernel de tamanho
2 × 2, ativação ReLU e padding ’same’. Em seguida, há uma camada de pooling, uma camada
de dropout com taxa de 0.2 e uma camada densa com 512 unidades e ativação ReLU. A saída da
rede possui duas ramificações, cada uma com três neurônios e ativações diferentes. O modelo é
treinado por 100 épocas com batch size de 32, utilizando o otimizador Adam com taxa de apren-
dizado de 0.001 e função de perda Mean Absolute Error (MAE). O treinamento conta com early
stopping monitorando a perda, interrompendo após três épocas sem melhoria, e um mecanismo
ReduceLROnPlateau que reduz a taxa de aprendizado se a perda não melhorar após duas épocas.
A saída da rede neural consiste nos seguintes valores: C, r, K, Pc, Pd, Pn.

Com a rede treinada, 300 novas simulações do modelo SIR são usadas para testar a rede. Dessa
forma, 300 imagens usam a rede para fornecer 300 conjuntos de parametros de saída. Com esses
parâmetros de saída, roda-se o modelo SIR novamente e compara-se um a um com as simulações
originais. A comparação é realizada como sendo o erro percentual médio entre os estados S, I
e R quando o sistema atinge o regime permanente, o que geralmente acontece após o passo de
tempo 100. Dessa forma, o erro médio ficou em 5%, mostrando que a RNC foi capaz de identificar
padrões temporais nos dados gerados e ajustar os parâmetros do modelo SIR de forma eficaz. Isso
possibilitou a obtenção de uma dinâmica epidemiológica semelhante à da simulação inicial.

Este trabalho considera uma metodologia baseada em redes neurais convolucionais para a es-
timação de parâmetros epidemiológicos a partir da evolução temporal da doença. A abordagem
proposta demonstrou ser capaz de identificar padrões temporais e fornecer estimativas dos parâ-
metros, permitindo a replicação da dinâmica epidemiológica original com baixo erro percentual.
Essa metodologia pode ser aplicada a outros modelos epidemiológicos, ampliando sua utilidade na
previsão de surtos e no desenvolvimento de estratégias de controle. Além disso, a transformação
de séries temporais em imagens para análise por redes neurais abre novas possibilidades para a
modelagem de fenômenos complexos em diversas áreas, como ecologia, economia e sistemas sociais,
destacando a versatilidade e o potencial dessa técnica.
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