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Mosquitoes, particularly Aedes aegypti, are key vectors of diseases such as dengue, Zika, and
chikungunya. Estimate mosquito population density is essential for designing and implementing
mosquito population control strategies. Traditional models, like [1] focus on temporal dynamics,
however, these models cannot explain the spatial aspects of mosquito distribution, which are im-
portant for understanding interactions with the environment and designing targeted interventions
such as sterile mosquito releases or Wolbachia-based strategies. Agent-Based Models (ABMs)
provide a way to address the spatio-temporal distribution problem while incorporating individual
heterogeneity and stochastic interactions [2].

To address this gap, we propose extending our previous work [3] asumming that the time-
dependent entomological parameters are constants and by integrating spatial dynamics. The spatial
heterogeneity as breeding sites and mosquito movement, this approach enhances the ability to
model interventions. This model considers adult female movement A and fixed juvenile populations
J at breeding sites. The carrying capacity Ck represents the maximum population size each
breeding site k can sustain.

The system is defined on an M × M grid, where each cell i represents a discrete position in
the automaton (G = {i | 1 ≤ i ≤ M2}). A subset K = {ik | k = 1, . . . , N} ⊂ G corresponds to the
breeding sites BSk, each located at ik and capable of hosting juvenile mosquito populations.

The population dynamics are divided into two components: stochastic population variation
and movement probability distribution. The population dynamics of juveniles Jk at each BSk, are
regulated by the birth rateb in a limited space Ck, the maturation rate d, and the mortality rates
(µJ and µA). The number of juveniles at time t+ 1 is given by:

Jk(t+ 1) = Jk(t) +Xbirth,k −Xmaturation,k −Xdeath,k, (1)

where the state transition probabilities are binomial distributions given by:
Xbirth,k ∼ Bin(Ak, b∆t(1− Jk/Ck)), Xmaturation,k ∼ Bin(Jk, 0.5∆t) and
Xdeath,k ∼ Bin(Jk, (d+ µJ)∆t), during the time interval ∆t. The adult behavior at a BSk, Ak is
given by:

Ak(t+ 1) = Ak(t) +Xmaturation,k −Xdeath,k, (2)

where Xdeath,k ∼ Bin(Ak, µA∆t), this means that breeding sites are the primary locations where
population changes (through maturation and death) occur.
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Each adult female has two movement modes: a Moore Neighborhood movement with a prob-
ability of 0.2 (moving to any of the eight neighboring cells with probability 0.025 each) and a
directed movement with a probability of 0.8 (moving one grid towards the closest breeding site
using the Manhattan metric). The probability of an automaton moving from cell k to cell j at
time t+ 1 is given by:

P (k → j) = 0.2× Pmoore(k → j) + 0.8× Pdirected(k → j) (3)

To implement the model, we set the following constant parameters: M = 50, b = 4, d = 0.05,
µJ = 1/30, µA = 1/30 and Ck = 200, for k = 1, 2, 3, 4, 5, with an initially homogeneous distribu-
tion of adult female mosquitoes across the entire map and a homogeneous distribution of juveniles
within the breeding sites. Juveniles were randomly placed on the map. Figure1(a) shows the initial
population density distribution per grid, while Figure1(b) illustrates the change in population den-
sity after 1000 simulation steps, highlighting a concentration of individuals exclusively at breeding
sites. Figure1(c) shows the evolution of the total adult population at each time step, indicating
that population stabilizes around a constant value like a steady state.

(a) Initial Conditions (b) Final distribution (c) Time Evolution

Figure 1: Numerical Simulation Preliminar Results. Source: Own elaboration.

The observed convergence provides preliminary evidence for the existence of an equilibrium in
the system, particularly as our time step ∆t is set to 1 day, ensuring that the numerical transition
probabilities remain below 1. This condition is crucial for the stability of the model and aligns with
the requirements of Markov transition probabilities. These preliminary results suggest that the
model is a valuable tool for understanding and predicting spatio-temporal dynamics in ecological
and epidemiological contexts, particularly for designing targeted mosquito control strategies.
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