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Este trabalho teve como objetivo aplicar a teoria da aprendizagem por refor¢o para resolver
o seguinte problema: maximizar a acuricia na confirmacao dos casos, minimizando ao mesmo
tempo o custo, ou seja, o nimero de testes laboratoriais realizados. O modelo leva em conta a
distribuicao espago-temporal dos casos notificados, as caracteristicas operacionais dos testes (como
sensibilidade e especificidade) e cenarios simulados de epidemias de dengue e chikungunya com
diferentes nimeros basicos de reprodugao (R0).

O ambiente de simulagéo foi desenvolvido em Python/Gymnasium [2], utilizando um modelo
SIR (Suscetivel-Infectado-Recuperado) [1] para representar a propagacao de doengas. A distribui-
¢ao espacial dos casos foi modelada como uma dispersao gaussiana em torno de pontos de foco
pré-definidos, simulando surtos localizados. O agente de aprendizagem por reforgo interage com
esse ambiente por meio de agoes que incluem: (1) testagem especifica para cada arbovirus (dengue
ou chikungunya); (2) confirmagao ou descarte epidemiolégico baseado em critérios operacionais; e
(3) inagao estratégica para evitar custos desnecessarios. A cada agdo, o agente recebe uma recom-
pensa que busca equilibrar a acuracia diagndstica e os custos operacionais, conforme a fungao:

R(s,a) = a - Acuracia(s,a) — 8 - Custo(a). (1)
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Figura 1: Desempenho comparativo dos agentes ao longo do treinamento. Fonte: Autoria propria.

Na primeira etapa, comparou-se o desempenho de dois agentes: um agente aleatorio (baseline)
e outro utilizando Q-Learning [4]. O agente baseline seleciona agoes de forma aleatoria, enquanto o
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Q-Learning atualiza iterativamente uma tabela de valores esperados de recompensa. Os resultados
(Figura 1) demonstraram que o Q-Learning superou significativamente o agente aleatorio, com um
aumento progressivo da recompensa acumulada ao longo das épocas de treinamento, indicando a
aprendizagem de uma politica eficiente de testagem.

Estes resultados preliminares validam o potencial da aprendizagem por refor¢o para otimizar
estratégias de testagem em arboviroses, combinando eficiéncia operacional e precisao diagnostica.
Como proximos passos, planeja-se: (1) implementar algoritmos de Deep Reinforcement Learning
[3] (como Deep Q-Learning), capazes de generalizar em espagos de parimetros complexos; (2)
incorporar dados reais de vigilancia epidemiologica para calibrar as simulagbes; e (3) analisar
a sensibilidade do modelo a pardmetros como a especificidade dos testes e atrasos na liberagao
de resultados. A expectativa é que esta abordagem forneca insights valiosos para a otimizagao de
politicas de testagem em situagoes reais, onde os recursos sao limitados e a agilidade na confirmagao
de casos é critica.
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