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Este trabalho teve como objetivo aplicar a teoria da aprendizagem por reforço para resolver
o seguinte problema: maximizar a acurácia na confirmação dos casos, minimizando ao mesmo
tempo o custo, ou seja, o número de testes laboratoriais realizados. O modelo leva em conta a
distribuição espaço-temporal dos casos notificados, as características operacionais dos testes (como
sensibilidade e especificidade) e cenários simulados de epidemias de dengue e chikungunya com
diferentes números básicos de reprodução (R0).

O ambiente de simulação foi desenvolvido em Python/Gymnasium [2], utilizando um modelo
SIR (Suscetível-Infectado-Recuperado) [1] para representar a propagação de doenças. A distribui-
ção espacial dos casos foi modelada como uma dispersão gaussiana em torno de pontos de foco
pré-definidos, simulando surtos localizados. O agente de aprendizagem por reforço interage com
esse ambiente por meio de ações que incluem: (1) testagem específica para cada arbovírus (dengue
ou chikungunya); (2) confirmação ou descarte epidemiológico baseado em critérios operacionais; e
(3) inação estratégica para evitar custos desnecessários. A cada ação, o agente recebe uma recom-
pensa que busca equilibrar a acurácia diagnóstica e os custos operacionais, conforme a função:

R(s, a) = α · Acurácia(s, a)− β · Custo(a). (1)

Figura 1: Desempenho comparativo dos agentes ao longo do treinamento. Fonte: Autoria própria.

Na primeira etapa, comparou-se o desempenho de dois agentes: um agente aleatório (baseline)
e outro utilizando Q-Learning [4]. O agente baseline seleciona ações de forma aleatória, enquanto o
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Q-Learning atualiza iterativamente uma tabela de valores esperados de recompensa. Os resultados
(Figura 1) demonstraram que o Q-Learning superou significativamente o agente aleatório, com um
aumento progressivo da recompensa acumulada ao longo das épocas de treinamento, indicando a
aprendizagem de uma política eficiente de testagem.

Estes resultados preliminares validam o potencial da aprendizagem por reforço para otimizar
estratégias de testagem em arboviroses, combinando eficiência operacional e precisão diagnóstica.
Como próximos passos, planeja-se: (1) implementar algoritmos de Deep Reinforcement Learning
[3] (como Deep Q-Learning), capazes de generalizar em espaços de parâmetros complexos; (2)
incorporar dados reais de vigilância epidemiológica para calibrar as simulações; e (3) analisar
a sensibilidade do modelo a parâmetros como a especificidade dos testes e atrasos na liberação
de resultados. A expectativa é que esta abordagem forneça insights valiosos para a otimização de
políticas de testagem em situações reais, onde os recursos são limitados e a agilidade na confirmação
de casos é crítica.
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