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Muitos sistemas dinâmicos apresentam múltiplos estados de equilíbrio separados por barreiras
de potencial, nas quais a ativação térmica pode promover transições entre eles. Um modelo clássico
para descrever esse fenômeno consiste em uma partícula sujeita a um potencial biestável U(x),
cuja dinâmica é governada pela equação de Langevin com ruído branco aditivo. A taxa de escape,
também conhecida como taxa de Kramers, quantifica a transição entre os mínimos do potencial e
constitui um parâmetro essencial na dinâmica do sistema.

Para potenciais simétricos e no regime de ruído fraco, i.e. σ2 ≪ ∆U , a taxa de Kramers é dada
por [4]:
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onde a altura da barreira é dada por ∆U = U(xmax)− U(xmin), com xmax e xmin correspondendo,
respectivamente, às posições do máximo e mínimo do potencial. A intensidade do ruído é dada por
σ2 e as curvaturas locais nos mínimos e máximos do potencial são ωmin e ωmax, respectivamente.

Extensões recentes da equação (1) para sistemas com ruído multiplicativo [6] consideram uma
função de difusão dependente do estado. Nesse contexto, a escolha da prescrição estocástica é
crucial, pois afeta diretamente a dinâmica do sistema [3] e pode influenciar fenômenos físicos
importantes, como a ressonância estocástica [2].

Embora a taxa de Kramers tenha sido amplamente estudada para potenciais simétricos, sis-
temas reais frequentemente apresentam potenciais assimétricos, o que introduz novos desafios na
descrição da dinâmica de escape. Neste trabalho, propomos uma formulação analítica para a taxa
de escape em sistemas com ruído multiplicativo e potenciais assimétricos [7], dada por:
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onde a altura da barreira do potencial de equilíbrio associada aos mínimos x = a e x = b é ∆Ua
eq e

∆U b
eq. As curvaturas locais correspondentes são ω̃a e ω̃b, enquanto a curvatura local associada ao

máximo e a função de difusão correspondente são denotadas por ω̃m e g(xm), respectivamente.
A expressão (2) destaca a contribuição simultânea de ambos os mínimos locais para a taxa de

Kramers. Ela foi obtida a partir do cálculo das probabilidades condicionais de transição entre esta-
dos metaestáveis, utilizando técnicas de integrais de caminho e expansão instanton-anti-instanton,
válidas no regime de ruído fraco e tempos longos.
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A dinâmica do sistema foi simulada utilizando o método de Euler-Maruyama [1] para a equação
de Langevin na prescrição de Itô [5]:

dx

dt
= −1

2
g2(x)

dU(x)

dx
+ σ2αg(x)g′(x) + g(x)η(t), (3)

com U(x) =
1

4
x4 − 1

2
x2 + px e g(x) = 1 + λx2, onde 0 < λ < 1 e 0 ≤ α ≤ 1, sendo consideradas

8× 104 trajetórias estocásticas.
Com o auxílio das simulações, calculou-se a média de x, verificando-se sua rápida convergência

para o valor de equilíbrio. Verificou-se também a dependência da taxa de decaimento de acordo
com diferentes prescrições estocásticas (Itô, Stratonovich e cinética) bem como a boa concordância
entre previsões teóricas e dados simulados, independentemente do ruído ou da prescrição. Os
resultados não apenas generalizam a taxa de Kramers para potenciais assimétricos, ampliando
sua aplicabilidade a sistemas reais, mas também destacam a relevância do potencial de equilíbrio
Ueq(x) na dinâmica estocástica. Além disso, evidenciam a influência das prescrições estocásticas
em observáveis como as taxas de decaimento.
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