
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Soluções Numéricas da Equação de Poisson: Eficiência do
Método de Jacobi com Devito e NumPy

Gabriel de O. Portes1, Thiago B. Ikeda2, Gilcilene S. de Paulo3

FCT/UNESP, Presidente Prudente, SP

Neste trabalho, analisamos as soluções numéricas da equação de Poisson por meio do método
iterativo clássico de Jacobi, explorando duas abordagens distintas de implementação computa-
cional: uma implementação manual em NumPy [2], com controle direto dos loops e esquemas
numéricos, sem otimizações avançadas; e uma implementação simbólica utilizando o Devito [4],
que gera código otimizado automaticamente a partir de expressões diferenciais definidas com o
SymPy e que também utiliza NumPy internamente para operações auxiliares.

Consideramos o problema (1) definido em Ω = [−1, 1]× [−1, 1]:{
∂2u
∂x2 + ∂2u

∂y2 = −2, em (x, y) ∈ Ω,

u(x, y) = 0, para (x, y) ∈ ∂Ω.
(1)

A discretização do domínio considera espaçamentos uniformes em x e y da seguinte forma: xi =
x0 + ih e yj = y0 + jh, i, j = 1, . . . , N − 1, tal que h é o espaçamento espacial e N é a quantidade
de subintervalos em ambas as direções, sendo x0, y0, xN , yN ∈ ∂Ω.

O problema (1) foi aproximado pela equação discreta (2) que representa o método iterativo de
Jacobi [1, 3], implementado de duas formas: manualmente com NumPy e por meio da geração de
código otimizado fornecida pelo Devito.

U
(k+1)
i,j =

1

4
(U

(k)
i−1,j + U

(k)
i+1,j + U

(k)
i,j−1 + U

(k)
i,j+1) +

h2

2
, (2)

tal que Ui,j ≈ u(xi, yj) e o índice k representa a iteração.

O critério de parada

(
N−1∑
i,j=1

(
U

(k+1)
i,j − U

(k)
i,j

)2) 1
2

< 10−6 foi adotado para obtenção das soluções

numéricas e estas foram verificadas pela comparação com a solução analítica do problema (1):

u(x, y) = 1 − y2 − 32

π3

∑∞
n=0

(−1)n

(2n+ 1)3
senh

(
(2n+ 1)π

2

)
cosh

(
(2n+ 1)πx

2

)
cos

(
(2n+ 1)πy

2

)
,

em que consideramos 100 termos da série. A Figura 1 (a) traz uma análise qualitativa dos resultados
numéricos obtidos pelo Devito e NumPy, com N = 65, x = 0 e −1 ≤ y ≤ 1. A Figura 1 (b)
apresenta o gráfico de cores da solução analítica. Os gráficos de cores das soluções numéricas não
foram incluídos, pois ficaram muito semelhantes.

Com o objetivo de avaliarmos a eficiência do método numérico a partir das distintas formas de
implementação, realizamos uma análise comparativa através do refinamento de malha. A Tabela 1
apresenta a acurácia de cada solução numérica considerando o erro relativo na norma de Frobenius,
além do desempenho das duas bibliotecas em termos de iterações e tempo de execução. Todas as
simulações foram realizadas na plataforma Google Colaboratory.

1gabriel.portes@unesp.br
2t.ikeda@unesp.br
3gilcilene.sanchez@unesp.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 12, n. 1, 2026.

Trabalho apresentado no XLIV CNMAC, Fundação Getulio Vargas - Rio de Janeiro - RJ, 2025.

010217-1 © 2026 SBMAC



2

(a) (b)

Figura 1: (a) Comparação da solução analítica com soluções numéricas obtidas por NumPy e Devito, com
N = 65, x = 0 e −1 ≤ y ≤ 1, e (b) solução analítica com 100 termos da série. Fonte: dos autores.

Tabela 1: Acurácia das soluções numéricas por NumPy e Devito e os seus respectivos desempenhos.

N
NumPy Devito

Iterações Erro Tempo Iterações Erro Tempo
5 37 4.76 · 10−2 0.623 ms 20 4.85 · 10−2 24.8 ms
9 155 1.28 · 10−2 12.724 ms 83 1.41 · 10−2 30.1 ms
17 594 3.27 · 10−3 0.212 s 327 4.94 · 10−3 30.23 ms
33 2244 8.39 · 10−4 3.235 s 1261 3.05 · 10−3 35.14 ms
65 8413 2.44 · 10−4 49.042 s 4649 3.86 · 10−3 43.84 ms
129 31361 1.29 · 10−4 25.82 min 16572 6.81 · 10−3 0.163 s
257 – – > 4 h 58883 1.67 · 10−2 1.12 s

As soluções numéricas obtidas pelo Devito apresentaram erros relativos ligeiramente maiores.
Contudo, o número de iterações e o tempo de processamento foram consideravelmente menores,
especialmente para malhas mais finas. Isso evidencia a eficiência da geração de código otimizado e
as vantagens de ferramentas como o Devito, que dispensam a necessidade de otimização manual.

Agradecimentos
À FAPESP, Processo n.o 2024/03241-3, e à CAPES, Processo n.o 88887.993946/2024-00.

Referências
[1] J. A. Cuminato e M. Meneguette Jr. Discretização de Equações Diferencias Parciais:

Técnica de Diferenças Finitas. 1a. ed. Rio de Janeiro: SBM, 2013. isbn: 9788583370055.
[2] C. R. Harris et al. “Array programming with NumPy”. Em: Nature 585.7825 (2020), pp. 357–

362. doi: 10.1038/s41586-020-2649-2.
[3] R. J. Leveque. Finite Difference Methods for Ordinary and Partial Differential Equa-

tions: Steady-state and Time-dependent Problems. 2a. ed. Filadélfia, EUA: Society for
Industrial e Applied Mathematics, 2007. isbn: 9780898716290.

[4] F. Luporini et al. “Architecture and Performance of Devito, a System for Automated Stencil
Computation”. Em: ACM Trans. Math. Softw. 46.1 (2020). doi: 10.1145/3374916.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

010217-2 © 2026 SBMAC


