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The Solow-Swan model, developed in 1956 [6, 7], has been a key reference for understanding
economic growth, but it does not account for the spatial distribution of activities, limiting its
applicability. To address this limitation, spatial dimensions have been incorporated [1, 4], allowing
researchers to study the impact of location on growth. Recently, researchers have been exploring
inverse problems, such as obtaining the convex-concave production function in the spatial model
[2, 3], but to the best of our knowledge, no study has yet investigated the determination of the
saving rate function.

In this context, this work aims to determine the saving rate, which depends solely on the spatial
coordinate, by solving the inverse problem in the spatial Solow-Swan model. We propose a model
that describes the evolution of capital density in local economies distributed along the compact
interval Ω = [0, l], with 0 < l < ∞. At each point x ∈ Ω , there is a capital density K(t, x) ≥ 0 and
a labor density L(x) ≥ 0, which are used to produce an aggregate good through a Cobb-Douglas
production function

f(K,L) = A(x)[Kϕ(t, x)L(x)1−ϕ]. (1)

Here, A(x) represents the technological factor, and ϕ ∈ (0, 1) indicates the intensity of capital
usage. The distribution of labor is initially given by the exogenous function L(x) ≥ 0. Thus, the
evolution of the capital stock in the economy is governed by the following reactive-diffusive partial
differential equation, with the corresponding initial and boundary conditions

Kt = s(x)A(x)
[
KϕL(x)1−ϕ

]
− δ(x)K + d(x)Kxx, x ∈ (0, l), t > 0, (2a)

K(t, x) = K0(x), x ∈ Ω = [0, l], t = 0, (2b)
Kx = 0, x ∈ ∂Ω = {0, l}, t > 0. (2c)

Here, s(x) ∈ (0, 1) is the saving rate function that we aim to estimate, δ(x) ∈ (0, 1) is the capital
depreciation rate, and d(x) > 0 is the capital diffusion coefficient, which indicates the intensity of
capital movement to regions with less available capital. Completing the model, the initial capital
distribution, K0(x) ≥ 0, is given by (2b), while the homogeneous Neumann boundary conditions
(2c) ensure no transfer of capital and labor at ∂Ω, making the economy a closed economy.

We propose a methodology based on Physics-Informed Neural Networks [5] with two Multi-
Layer Perceptron networks. The first network solves the PDE in (2), using t and x as inputs,
while the second estimates the saving rate with x as the only input. Both networks use the Adam
optimizer with a learning rate of 10−3 to calibrate the parameters (weights and biases) of the
networks. Studies were conducted to determine the architecture of each network. We concluded
with a network that solves the PDE with a 2-layer deep architecture and 70 neurons, while the
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one approximating the saving rate function uses a 1-layer deep architecture and 40 neurons. In
both networks, the activation functions up to the last layer are hyperbolic tangent. In the last
layer, the first network uses the softplus activation function to ensure non-negative values, which
aligns with the nature of capital, while the second network uses the hyperbolic tangent. Finally,
we identified the ideal input sample set for x and t in the first network, consisting of 2500 points,
which achieves five consecutive iterations with the loss function below 10−5 in the fewest epochs.

To evaluate the methodology, we consider a case study with (2): l ≡ 10, T ≡ 10, ϕ ≡ 1/3,
δ(x) ≡ 0.05, A(x) ≡ 1, d(x) ≡ 0.25, and the functions L(x) = 0.3x2 [1− cos (4πx/l)], k0(x) =
cos4 (πx/(2l)− π/2), and s(x) = 0.2 cos4 (πx/(2l)). Data for the inverse problem consisted of dis-
crete K(x,t) measurements produced by a finite-element solver of the manufactured direct problem.
We have obtained estimations of s(x) with a mean squared error of 8 · 10−6. Using PINNs in the
direct approach and comparing them with the finite element method, the error was 10−5. For the
inverse problem, with 10 validation points, we obtained errors of 2 ·10−5 for k(x, t) and 5 ·10−6 for
s(x), which are considered satisfactory results. Further work should extend test cases and apply
real data from IBGE.
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