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O método da potência é um algoritmo iterativo utilizado para encontrar o autovalor de maior
magnitude (em valor absoluto) e seu autovetor associado de uma matriz quadrada A. Ele funciona
tomando algum vetor arbitrário de norma 1 e multiplicando esse vetor por uma matriz A, obtendo,
assim, um novo vetor, o qual será normalizado. O processo é repetido até que essa sequência de
vetores gerados convirja para um autovetor correspondente ao maior autovalor de A [3]. Na Figura
1, temos o algoritmo desse método.

Método da potência
A uma matriz n× n
v0 = algum vetor com ∥v0∥ = 1
k = 1
repita
wk = Avk−1

vk = wk

∥wk∥ (autovetor aproximado)
λk = (vk)

TAvk (autovalor aproximado)
k = k + 1

até a convergência.

Figura 1: algoritmo da iteração de potência. Fonte: Adaptado de [1].

O método da potência é eficiente para matrizes grandes e esparsas, pois dispensa a fatoração
completa da matriz. Uma das aplicações mais conhecidas é o cálculo do PageRank, uma métrica
criada por Larry Page e Sergey Brin para avaliar a importância de páginas na web.

O PageRank é um autovetor da matriz do Google, que representa um grafo onde os vértices
são páginas web e as arestas são os links entre elas. A relevância de cada página é determinada
com base na quantidade e qualidade dos links que apontam para ela. Este conceito fundamenta-se
na premissa de que a quantidade de links direcionados para uma página e oriundos dela fornece
informações relevantes sobre a sua importância [2].

No cálculo do PageRank, as páginas da web são ordenadas de 1 a n, e a matriz Q é definida
como:

Qij =

{
1
Nj

, se há um link de j para i

0, caso contrário,
(1)

onde Nj é o número de links de saída da página j. O rank de i, denotado por ri, é definido de tal
forma que, se uma página j, altamente classificada, tiver um link de saída para i, isto aumenta a
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importância de i. A definição preliminar do PageRank é:

ri =
∑
j∈Ii

rj
Nj

, (2)

onde Ii é o conjunto de páginas que possuem um link para a página i. Esta definição é recursiva,
portanto o PageRank não pode ser calculado diretamente. Assim, dado r0 o vetor com o rank
inicial de cada página, após k + 1 iterações, temos:

r
(k+1)
i =

∑
j∈Ii

r
(k)
j

Nj
, para k = 0, 1, . . . (3)

Esse processo reflete a importância relativa de cada página, com base nos links recebidos.
O PageRank permite filtrar páginas irrelevantes em pesquisas, priorizando aquelas com maior

relevância. O cálculo iterativo, iniciado com um vetor r0, converge para o autovetor que representa
a importância de cada página, demonstrando a eficácia do método da potência em problemas de
grande escala. Pode-se observar que a definição (2) é equivalente a multiplicar a linha i da matriz
Q pelo vetor r, que contém o rank de todas as páginas. Assim, pode-se escrever a equação na
forma matricial λr = Qr, λ = 1. Portanto, a iteração (3) é equivalente a rk+1 = Qrk, k = 0, 1, . . .,
que corresponde ao método da potência para calcular o autovetor. Assim, queremos resolver o
problema de autovalores Ar = r, onde ∥r∥ = 1. Note que a matriz A é esparsa e sua dimensão é
da ordem de bilhões. Para realizar este cálculo, propomos o método da potência.

Para garantir que o PageRank esteja bem definido e que existe um autovalor igual a 1, pre-
cisamos fazer algumas modificações. A matriz Q é modificada de modo que, se uma página não
possui link para nenhuma outra, então a coluna de Q composta de zeros é modificada por um valor
constante em cada posição. Isto significa que existe igual probabilidade de ir para qualquer página
na rede. Assim, Q passa a ter a forma: P = Q+ 1

ned
T , onde e,d ∈ Rn, eT = (1, 1, . . . , 1) e dj = 1,

se Nj = 0 e 0 caso contrário. A matriz P obtida é uma matriz coluna-estocástica, isto é, ela possui
apenas elementos não negativos e os elementos de cada coluna somam 1. Reescrevendo λr = Qr,
obtemos Pr = r. Além disso, para garantir que exista um link de toda página da web para outra,
é feita uma combinação convexa de P e uma matriz de posto 1: A = αP + (1 − α) 1nee

T , para
algum α satisfazendo 0 ≤ α ≤ 1. Para a convergência do algoritmo, devemos conhecer como os
autovalores de P se alteram após sua modificação, o que é mostrado no Teorema 1.

Teorema 1. Suponha que os autovalores da matriz coluna-estocástica P sejam {1, λ2, λ3, . . . , λn}.
Então os autovalores de A = αP + (1− α) 1nee

T são {1, αλ2, αλ3, . . . , αλn}.

O Teorema 1 implica que mesmo que P tenha múltiplos autovalores iguais a 1, o que é verdadeiro
para a matriz Google, o segundo maior autovalor em magnitude de A é sempre igual a α. Uma
vantagem adicional é que não precisamos utilizar o vetor d em nenhum momento, o que significa
que não é necessário saber quais páginas não possuem links de saída.
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