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Com o avanço da tecnologia, muitos métodos criptográficos antigos, como a Cifra de César,
tornaram-se vulneráveis. Já a criptografia com curvas elípticas (ECC) continua segura dentro de
limites computacionais viáveis. Devido ao seu baixo custo computacional, a ECC é eficiente para
dispositivos com recursos limitados, sendo usada em smartcards, IoT e criptomoedas.

A segurança da ECC baseia-se na dificuldade de resolver o problema do logaritmo discreto
(PLD) em curvas elípticas. Esse problema surge na estrutura matemática dessas curvas, que são
definidas pela equação de Weierstrass y2 = x3 + ax + b sobre um corpo finito Fq. Os pontos da
curva, com a operação de soma, formam um grupo em que o PLD é formulado. Para curvas bem
escolhidas, resolver o PLD é considerado computacionalmente inviável.

A complexidade computacional dos algoritmos utilizados para atacar o PLD é denotada por
O(f(t)), em que f é uma função que descreve o crescimento do tempo de execução do algoritmo
em função do parâmetro t. Nesse trabalho analisamos o custo computacional de alguns desses
algoritmos. Em nossa análise, calculamos a complexidade baseada na quantidade de multiplicações
de pontos, pois essa operação é fundamental para os cálculos em criptografia de curvas elípticas
e influencia diretamente o custo computacional dos ataques. Usamos [3] como base para esses
cálculos.

Implementamos operações fundamentais em curvas elípticas utilizando a linguagem de progra-
mação Python. Além disso, desenvolvemos e analisamos a implementação dos algoritmos de ataque
ao PLD: o método de Pohlig-Hellman, o Big-Step Giant-Step e a abordagem de força bruta.

A abordagem de força bruta consiste em testar exaustivamente todas as possíveis chaves pri-
vadas até encontrar a correta. Sua complexidade é O(n), em que n é a ordem do corpo Fq.
Isso significa que seu custo cresce linearmente com a ordem da curva e a chave privada. Embora
ineficiente para curvas grandes, serve como referência para avaliar métodos mais avançados.

O método Big-Step Giant-Step otimiza a busca ao dividir o espaço de soluções em duas fases:
uma pré-computação de valores (passos pequenos) armazenados em uma tabela e uma busca com
saltos maiores (passos grandes). Sua complexidade é proporcional à raiz quadrada da ordem do
grupo dos pontos da curva. Apesar de reduzir significativamente as operações em comparação à
força bruta, exige mais memória para armazenar os valores pré-calculados.

Já o algoritmo de Pohlig-Hellman utiliza a fatoração da ordem do grupo da curva para dividir o
problema em subproblemas menores, resolvendo cada um separadamente e combinando as soluções
com o Teorema Chinês do Resto. Sua complexidade depende do somatório dos fatores primos da
ordem do grupo, sendo especialmente eficiente quando esses fatores são pequenos. O desempenho
varia pouco com a chave, pois depende principalmente da estrutura do grupo.

Para avaliar a eficácia dessas estratégias, realizamos uma análise da complexidade computa-
cional da nossa implementação, considerando o número de operações de multiplicação de pontos
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necessárias para encontrar a chave privada em um sistema baseado em ECC. Executamos os algo-
ritmos em diferentes cenários e realizamos a contagem exata das multiplicações de pontos efetuadas
em cada caso.

No exemplo analisado, utilizamos o corpo F7919, a curva elíptica y2 = x3 + 1001x + 75 e o
ponto gerador P (4023, 6036). A figura 1 representa os resultados obtidos, e nos mostra algumas
características dos algoritmos de ataque citados previamente.

Figura 1: Gráfico de complexidade. Fonte: Próprio autor.

O gráfico da figura 1 foi obtido a partir da variação da chave privada escolhida. Todos os demais
parâmetros — o corpo finito, a curva elíptica e o ponto gerador — permaneceram constantes. No
gráfico, nota-se que o tempo de execução do ataque por força bruta cresce linearmente com o
valor da chave privada, o que é esperado, já que chaves maiores exigem mais iterações para serem
encontradas. Por outro lado, os algoritmos de Pohlig-Hellman e Baby-Step Giant-Step (BSGS)
apresentam variações mínimas no número de operações, que podem ser consideradas constantes.
Isso ocorre porque esses algoritmos dependem da ordem do grupo de pontos, que não se altera uma
vez que os parâmetros da curva e do corpo finito permanecem fixos.
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