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Eficiência é uma das métricas mais relevantes na avaliação de implementações de algoritmos.
Geralmente, em métodos numéricos, há uma relação direta entre alta precisão e alto custo compu-
tacional. Diante disso, explorar novas abordagens que conciliem esses dois aspectos é extremamente
importante.

Tendo em vista o tempo de execução e o consumo de memória, uma análise comparativa foi
feita entre uma abordagem vetorizada e uma abordagem com laços explícitos na implementação
do Método dos Elementos Finitos (MEF) em Julia. A vetorização é uma abordagem utilizada
na implementação de algoritmos que processa operações em blocos de dados, diferente do que
comumente é feito com laços explícitos (tais como “for ” e “while”) [2].

A formulação forte da Equação Diferencial Parcial (EDP) de interesse é descrita por: dadas
funções f : [0, 1]× [0, 1] → R, u0 : [0, 1] → R e g : R → R, determine u : [0, 1]× [0, 1] → R tal que:

ut(x, t)− uxx(x, t) + ux(x, t) + u(x, t) + g(u(x, t)) = f(x, t), ∀(x, t) ∈]0, 1[×[0, 1],

u(0, t) = u(1, t) = 0, ∀t ∈ [0, 1],

u(x, 0) = u0(x), ∀x ∈]0, 1[.

(1)

O MEF é aplicado na dimensão espacial considerando a discretização uniforme xi = ih, para
i = 0, . . . , ne − 1, sendo ne o número de elementos finitos e h o comprimento de cada elemento.
O método de Crank-Nicolson linearizado é aplicado na dimensão temporal com passo τ constante
e discretização uniforme tn = nτ , n = 1, . . . , N , levando em conta que tn− 1

2
= tn+tn−1

2 . Desse
modo, o problema em (1) é transformado em (2), obtendo-se o seguinte Sistema Linear Iterativo:

1

τ
M(C(n) − C(n−1)) +

1

2
K(C(n) + C(n−1)) = F (n− 1

2 ) −G( 3C
(n−1)−C(n−2)

2 ),

C(0) =
[
u0(x1), u0(x2), . . . , u0(xne−1)

]T
,

(2)

em que, para todo i, j = 1, . . . , ne − 1 e n = 1, . . . , N ,

Mij =

∫ b

a

φi(x)φj(x) dx, Kij =

∫ b

a

(dφi(x)

dx

dφj(x)

dx
+ φi(x)

dφj(x)

dx
+ φi(x)φj(x)

)
dx,

F
(n− 1

2 )
i =

∫ b

a

φi(x)f(x, tn− 1
2
) dx, Gi(

3C(n−1)−C(n−2)

2 ) =

∫ b

a

φi(x) g(
3U(n−1)(x)−U(n−2)(x)

2 ) dx.
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A função de interesse u(x, t) = sin(πx)e−t/π2 é aproximada por U (n)(x) =
∑ne−1

j=1 C
(n)
j φj(x),

sendo φj(x) funções lineares por partes [1]. Os experimentos adotaram τ = 2−15, N = 1/τ ,
h = 1/ne e g(s) = s3 − s. Os resultados estão apresentados nas Tabelas 1 e 2 a seguir: as
estatísticas na primeira correspondem a 5000 amostras e na segunda correspondem a 50 amostras.

Tabela 1: Estatísticas de tempo e alocação na Heap durante a construção das estruturas.
Tempo (µs)

ne Estrutura Melhor Pior Médio Heap (MiB)

25

K (Vet.) 700 · 10−6 18 2± (950 · 10−3) 9 · 2−10

K 691 · 10−3 6 (896± 171) · 10−3 8 · 2−10

F (Vet.) 3 14 3± (241 · 10−3) 144 · 2−20

F 3 11 3± 1 0
G (Vet.) 260 · 10−3 5 (274± 78) · 10−3 0

G 167 · 10−3 974 · 10−3 (248± 73) · 10−3 0

210

K (Vet.) 20 1318 34± 57 265 · 2−10

K 19 1938 33± 56 232 · 2−10

F (Vet.) 79 134 80± 2 144 · 2−20

F 90 183 91± 4 0
G (Vet.) 5 13 5± 1 0

G 5 16 5± 1 0

215

K (Vet.) 728 2990 1002± 246 8
K 612 2858 811± 199 7

F (Vet.) 2545 5069 2599± 49 144 · 2−20

F 2891 5014 2970± 231 0
G (Vet.) 180 311 182± 4 0

G 152 342 155± 14 0

Tabela 2: Estatísticas de tempo e alocação na Heap durante a resolução do sistema linear.
Tempo (µs)

ne Abordagem Melhor Pior Médio Heap (MiB)

25
Vetorizada 133 · 103 151 · 103 (138± 3) · 103 44

Laços Explícitos 119 · 103 132 · 103 (123± 3) · 103 38

210
Vetorizada 3304 · 103 3482 · 103 (3350± 34) · 103 210

Laços Explícitos 3654 · 103 3913 · 103 (3686± 51) · 103 210

215
Vetorizada 106 · 106 108 · 106 107 · 106 ± 256 · 103 32 · 210

Laços Explícitos 116 · 106 119 · 106 117 · 106 ± 827 · 103 32 · 210

À medida que o número de elementos ne aumenta, a abordagem vetorizada se torna mais
vantajosa em termos de tempo para resolver o sistema linear, devido à construção do vetor F .
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