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Abstract— A dynamical characterization of the stability boundary for a fairly large class of nonlinear au-

tonomous dynamical systems is developed in this paper. This characterization generalizes the existing results by

allowing the existence of saddle-node equilibrium points on the stability boundary. The stability boundary of an

asymptotically stable equilibrium point is shown to consist of the stable manifolds of the hyperbolic equilibrium

points on the stability boundary, the stable manifolds of type-zero saddle-node equilibrium points on the stability

boundary and the stable center and center manifolds of the type-k saddle-node equilibrium points with k ≥ 1 on

the stability boundary.
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1 Introduction

A topological and dynamic characterization of the
stability boundary of autonomous nonlinear dy-
namical systems were given in [2] and [8]. The
existing characterizations of the stability bound-
ary were derived under some key assumptions on
the vector field, including the hyperbolicity of the
equilibrium points on the stability boundary and
transversality conditions.

In this paper, we studying the characteriza-
tions of the stability region and its boundary when
non-hyperbolic equilibrium points belong to the
stability boundary. Some work in this direction
has already been developed and characterizations
of the stability boundary were given in the pres-
ence of particular types of non-hyperbolic equilib-
rium points on the stability boundary. A complete
characterization of the stability boundary was de-
veloped in the presence of type-zero saddle-node
non-hyperbolic equilibrium points on the stability
boundary in [1] and in the presence of supercritical
Hopf equilibrium points in [3].

In this paper, we give a step further on this
direction by studying the characterization of sta-
bility boundaries in the presence of any type
of saddle-node equilibrium point on the stability
boundary. Necessary and suffcient conditions for
a saddle-node equilibrium point belonging to the
stability boundary will be presented. A complete
characterization of the stability boundary in the
presence of saddle-node equilibrium points on the
stability boundary is also presented. It is shown
that the stablity boundary is comprised of all sta-
ble manifolds of the hyperbolic equilibrium points
on the stability boundary, the stable manifolds of

type-zero saddle-node equilibrium points on the
stability boundary and the stable center and cen-
ter manifolds of the type-k saddle-node equilib-
rium points with k ≥ 1 on the stability boundary.

2 Preliminaries

In this section, some classical concepts of the the-
ory of dynamical systems are reviewed. In partic-
ular, an overview of the main features of the dy-
namic behavior of a system in the neighborhood
of a specific type of non-hyperbolic equilibrium
point, the saddle-node equilibrium point, is pre-
sented. More details on the content explored in
this section can be found in [4], [5], [6] e [7].

Consider the nonlinear autonomous dynami-
cal system

ẋ = f(x) (1)

where x ∈ R
n. One assumes that f : Rn → R

n

is a vector field of class Cr with r ≥ 2. The solu-
tion of (1) starting at x at time t = 0 is denoted
by ϕ(t, x). The map t → ϕ(t, x) defines in R

n a
curve passing through x at t = 0 that is called
trajectory or orbit of (1) through x. If M is a set
of initial conditions, then ϕ(t,M) denotes the set
{ϕ(t, x), x ∈ M} =

⋃

x∈M ϕ(t, x). A set S ∈ R
n

is said to be an invariant set of (1) if every tra-
jectory of (1) starting in S remains in S for all
t.

The idea of transversality is basic in the study
of dynamical systems. The transversal intersec-
tion is notorious because it persists under pertur-
bations of the vector field [4]. The manifolds M

and N of class Cr, with r ≥ 1, in R
n, satisfy

the transversality condition if either (i) the tan-
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gent spaces of M and N span the tangent space
of Rn at every point x of the intersection M ∩N ,
i.e., Tx(M)+Tx(N) = Tx(R

n) for all x ∈ M ∩N

or (ii) they do not intersect at all.

2.1 Saddle-node Equilibrium Points

In this section, a specific type of non-hyperbolic
equilibrium point, namely saddle-node equilib-
rium point, is studied. In particular, the dynami-
cal behavior in a neighborhood of the equilibrium
is investigated, including the asymptotic behavior
of solutions in the invariant local manifolds.

Definition 2.1 [7](Saddle-Node Equilibrium

Point): A non-hyperbolic equilibrium point p ∈
R

n of (1) is called a saddle-node equilibrium point
if the following conditions are satisfied:
(i) Dxf(p) has a unique simple null eigenvalue
and none of the other eigenvalues have real part
equal to zero.
(ii) w(D2

xf(p)(v, v)) 6= 0,
with v as the right eigenvector and w the left eigen-
vector associated with the null eigenvalue.

Saddle-node equilibrium points can be classi-
fied in types according to the number of eigenval-
ues of Dxf(p) with positive real part.

Definition 2.2 (Saddle-Node Equilibrium

Type): A saddle-node equilibrium point p of (1),
is called a type-k saddle-node equilibrium point if
Dxf(p) has k eigenvalues with positive real part
and n− k − 1 with negative real part.

If p is a saddle-node equilibrium point of (1),
then there exist invariant local manifolds W s

loc(p),
W cs

loc(p), W
c
loc(p), W

u
loc(p) and W cu

loc(p) of class C
r,

tangent to Es, Ec⊕Es, Ec, Eu and Ec⊕Eu at p,
respectively [8]. These manifolds are respectively
called stable, stable center, center, unstable and
unstable center manifolds. The stable and unsta-
ble manifolds are unique, but the stable center,
center and unstable center manifolds may not be.

If p is a type-0 saddle-node equilibrium point
of (1), then the following properties are held [7]:

(i) The (n − 1)-dimensional local stable mani-
fold W s

loc(p) of p exists, is unique, and if
q ∈ W s

loc(p) then ϕ(t, q) −→ p as t −→ +∞.

(ii) The unidimensional local center manifold
W c

loc(p) of p can be splitted in two invariant
submanifolds:

W c
loc(p) = W c−

loc (p) ∪W c+

loc(p)

where q ∈ W c−

loc (p) implies ϕ(t, q) −→ p

as t −→ +∞ and q ∈ W c+

loc(p) implies
ϕ(t, q) −→ p as t −→ −∞. Moreover,

W c+

loc(p) is unique while W c−

loc (p) is not.

If p is a type-k saddle-node equilibrium point
of (1), with 1 ≤ k ≤ n − 2, then the following
properties are held [7]:

(i) The k-dimensional local unstable manifold
Wu

loc(p) of p exists, is unique, and if q ∈
Wu

loc(p) then ϕ(t, q) −→ p as t −→ −∞.

(ii) The (n−k−1)-dimensional local stable man-
ifold W s

loc(p) of p exists, is unique, and if
q ∈ W s

loc(p) then ϕ(t, q) −→ p as t −→ +∞.

(iii) The (n − k)-dimensional local stable center
manifold W cs

loc(p) of p can be splitted in two
invariant submanifolds:

W cs
loc(p) = W cs−

loc (p) ∪W cs+

loc (p)

where q ∈ W cs−

loc (p) implies ϕ(t, q) −→ p as
t −→ +∞. The local stable center manifold
W s

loc(p) is contained in W cs−

loc (p), moreover,

W cs−

loc (p) is unique while W cs+

loc (p) is not.

(iv) The (k+1)-dimensional local unstable center
manifold W cu

loc(p) of p can be splitted in two
invariant submanifolds:

W cu
loc(p) = W cu−

loc (p) ∪W cu+

loc (p)

where q ∈ W cu+

loc (p) implies ϕ(t, q) −→ p

quando t −→ −∞. The local unstable cen-
ter manifoldWu

loc(p) is contained inW cu+

loc (p),

moreover, W cu+

loc (p) is unique while W cu−

loc (p)
is not.

If p is a type-(n− 1) saddle-node equilibrium
point of (1), then the following properties are held
[7]:

(i) The (n− 1)-dimensional local unstable man-
ifold Wu

loc(p) of p exists, is unique, and if
q ∈ Wu

loc(p) then ϕ(t, q) −→ p as t −→ −∞.

(ii) The unidimensional local center manifold
W c

loc(p) of p can be splitted in two invariant
submanifolds:

W c
loc(p) = W c−

loc (p) ∪W c+

loc(p)

where q ∈ W c−

loc (p) implies ϕ(t, q) −→ p as

t −→ +∞ and q ∈ W c+

loc(p) implies ϕ(t, q) −→

p as t −→ −∞. Moreover, W c−

loc (p) is unique

while W c+

loc(p) is not.

Although the stable and unstable manifolds of
a hyperbolic equilibrium point are defined extend-
ing the local manifolds through the flow, this tech-
nique cannot be applied to general non-hyperbolic
equilibrium points. However, in the particular
case of a saddle-node equilibrium point p, one still
can define the global manifolds W s(p), Wu(p),

W c+(p), W c−(p), W cs−(p) and W cu+

(p) extend-

ing the local manifolds W s
loc(p), W

u
loc(p), W

c+

loc(p),
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Figure 1: Manifolds W cs
−

loc (p) and W cu
+

loc (p) for a

type-1 saddle-node equilibrium point p of system (1)

on R
3.

W c−

loc (p), W
cs−

loc (p) and W cu+

loc (p) through the flow
as follows:

W s(p) :=
⋃

t≤0

ϕ(t,W s
loc(p))

Wu(p) :=
⋃

t≥0

ϕ(t,Wu
loc(p))

W cs−(p) :=
⋃

t≤0

ϕ(t,W cs−

loc (p))

W cu+

(p) :=
⋃

t≥0

ϕ(t,W cu+

loc (p))

W c−(p) :=
⋃

t≤0

ϕ(t,W c−

loc (p)) and

W c+(p) :=
⋃

t≥0

ϕ(t,W c+

loc(p)).

This extension is justified by the aforemen-
tioned invariance and the asymptotic behavior
of the local manifolds W s

loc(p), W
u
loc(p), W

c+

loc(p),

W c−

loc (p), W
cs−

loc (p) and W cu+

loc (p), see items (1), (2)
and (3) above. Figure 1 illustrates the manifolds

W cs−

loc (p) and W cu+

loc (p) for a type-1 saddle-node
equilibrium point p on R

3.

2.2 Stability Region

Suppose xs is an asymptotically stable equilibrium
point of (1). The stability region (or basin of at-
traction) of xs is the set

A(xs) = {x ∈ R
n : ϕ(t, x) → xs as t → ∞},

of all initial conditions x ∈ R
n whose trajectories

converge to xs when t tends to infinity.
The stability region A(xs) is an open and in-

variant set. Its closure A(xs) is invariant and the
stability boundary ∂A(xs), the topological bound-
ary of A(xs), is a closed and invariant set [1]. If
A(xs) is not dense in R

n, then ∂A(xs) is of dimen-
sion n− 1 [2].

3 Hyperbolic Equilibrium Points on the
Stability Boundary

In this section, an overview of the existing body of
theory about the stability boundary characteriza-
tion of nonlinear dynamical systems is presented.

The unstable equilibrium points that lie on
the stability boundary ∂A(xs) play an essential
role in the stability boundary characterization.
Next theorem offers necessary and sufficient condi-
tions to guarantee that a hyperbolic equilibrium
point lies on the stability boundary in terms of
properties of its stable and unstable manifolds.

Theorem 3.1 (Hyperbolic Equilibrium

Point on the Stability Boundary)[2] Let x∗

be a hyperbolic equilibrium point of (1). Suppose
also the existence of an asymptotically stable
equilibrium point xs and let A(xs) be its stability
region. Then the following holds:
(i) x∗ ∈ ∂A(xs) if and only if Wu(x∗)∩A(xs) 6= ∅.
(ii) x∗ ∈ ∂A(xs) if and only if (W s(x∗)−{x∗})∩
∂A(xs) 6= ∅.

Let xs be a hyperbolic asymptotically stable equi-
librium point of (1) and consider the following as-
sumptions:
(A1) All the equilibrium points on ∂A(xs) are hy-
perbolic.
(A2) The stable and unstable manifolds of equi-
librium points on ∂A(xs) satisfy the transversality
condition.
(A3) Every trajectory on ∂A(xs) approaches one
of the equilibrium points as t → ∞.

Assumptions (A1) and (A2) are generic prop-
erties of dynamical systems in the form of (1). In
other words, they are satisfied for almost all dy-
namical systems in the form of (1) and in practice
do not need to be verified. On the contrary, as-
sumption (A3) is not a generic property of dynam-
ical systems and has to be verified. The existence
of an energy function is a sufficient condition for
the satisfaction of assumption (A3). We refer the
reader to [2] for more details regarding this issue.

According to Theorem 3.1, the condition
Wu(x∗)∩A(xs) 6= ∅ is sufficient to guarantee that
the hyperbolic equilibrium point x∗ lies on the sta-
bility boundary. Under assumptions (A1), (A2)
and (A3), next theorem shows that this condition
is also necessary.

Theorem 3.2 (Hyperbolic Equilibrium

Points on the Stability Boundary)[2] Let xs

be a hyperbolic asymptotically stable equilibrium
point of (1) and A(xs) be its stability region. If
assumptions (A1)− (A3) are satisfied and x∗ is a
hyperbolic equilibrium point of (1), then:

(i) x∗ ∈ ∂A(xs) if and only if Wu(x∗) ∩A(xs) 6=
∅.

(ii) x∗ ∈ ∂A(xs) if and only if W s(x∗) ⊆ ∂A(xs).
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Next theorem explores Theorem 3.2 to pro-
vide a complete characterization of the stability
boundary ∂A(xs) in terms of the unstable equi-
librium points lying on the stability boundary. It
asserts the stability boundary ∂A(xs) is the union
of the stable manifolds of the equilibrium points
on ∂A(xs).

Theorem 3.3 (Stability Boundary Charac-

terization)[2] Let xs be a hyperbolic asymptoti-
cally stable equilibrium point of (1) and A(xs) be
its stability region. If assumptions (A1)−(A3) are
satisfied, then:

∂A(xs) =
⋃

i

W s(xi)

where xi, i = 1, 2, ... are the equilibrium points on
∂A(xs).

4 Saddle-Node Equilibrium Points on the
Stability Boundary

In the presence of non-hyperbolic equilibrium
points on the stability boundary, Theorem 3.3 is
not valid.

In this section, a generalization of the exist-
ing results on the stability boundary character-
ization is developed. In particular, a complete
characterization of the stability boundary is de-
veloped when type-k saddle-node non-hyperbolic
equilibrium points, with k ≥ 0, lies on the stability
boundary ∂A(xs).

Next theorem offers necessary and sufficient
conditions to guarantee that a saddle-node equi-
librium point lies on the stability boundary in
terms of the properties of its stable, unstable and
unstable center manifolds.

Theorem 4.1 (Saddle-Node Equilibrium

Point on the Stability Boundary): Let p be
a saddle-node equilibrium point of (1). Suppose
also, the existence of an asymptotically stable
equilibrium point xs and let A(xs) be its stability
region. Then the following holds:

(i) If p is a type-0 saddle-node equilibrium point,
then the following statements are equivalent:

(a) p ∈ ∂A(xs)

(b) (W c+(p)− {p}) ∩A(xs) 6= ∅

(c) (W s(p)− {p}) ∩ ∂A(xs) 6= ∅

(ii) If p is a type-k saddle-node equilibrium point,
then the following statements are equivalent:

(a) p ∈ ∂A(xs)

(b) (W cu+

(p)−{p})∩A(xs) 6= ∅ if 1 ≤ k ≤
n− 1

(c) (W s(p)−{p})∩∂A(xs) 6= ∅ if n−k ≥ 2

The proof is omitted due to space limitation.
A stonger version of the previous theorem

can be proven under some additional assumptions.
Let xs be an asymptotically stable equilibrium
point and p be a saddle-node equilibrium point
of (1) on the stability bounbdary ∂A(xs). Con-
sider the following assumptions:

(A1
′

) All the equilibrium points on ∂A(xs) are
hyperbolic or saddle-node equilibrium points.

(A2
′

) The following transversality conditions are
satisfied:

(i) The stable and unstable manifolds of hyper-
bolic equilibrium points on ∂A(xs) satisfy the
transversality condition.

(ii) The unstable manifolds of hyperbolic equilib-
rium points and the stable manifold W s(p) of
the type-0 saddle-node equilibrium point p on
∂A(xs) satisfy the transversality condition.

(iii) The unstable manifolds of hyperbolic equi-
librium points and the stable component of
stable center manifold W cs−(p) of the type-
k saddle-node equilibrium point p with 1 ≤
k ≤ n − 2 on ∂A(xs) satisfy the transversal-
ity condition.

(iv) The unstable manifolds of hyperbolic equi-
librium points and the stable component of
center manifold W c−(p) of the type-(n − 1)
saddle-node equilibrium point p on ∂A(xs)
satisfy the transversality condition.

(v) The stable manifolds of hyperbolic equilib-
rium points and the ustable component of un-
stable center manifold W cu+

(p) of the saddle-
node equilibrium point p on ∂A(xs) satisfy
the transversality condition.

(vi) The stable manifold of equilibrium points
and ustable component of center manifold
W c+(p) of the type-0 saddle-node equilibrium
point p on ∂A(xs) satisfy the transversality
condition.

(vii) The stable component of stable center mani-

fold (W cs−(p)−{p}) and the ustable compo-

nent of unstable center manifold (W cu+

(p)−
{p}) of the type-k saddle-node equilibrium
point p with 1 ≤ k ≤ n − 2 on ∂A(xs) have
empty intersection.

(viii) The stable component of center manifold

(W c−(p)− {p}) and the unstable component

of unstable center manifold (W cu+

(p)− {p})
of the type-(n − 1) saddle-node equilibrium
point p on ∂A(xs) have empty intersection.

Assumptions (A1
′

) and (A2
′

) are weaker than
(A1) and (A2) respectively. Assumption (A1

′

) al-
lows the presence of non-hyperbolic equilibrium
points on the stability boundary. Assumption
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(A1
′

) and (A2
′

) are generic properties of dynam-
ical systems in the form of (1).

Under assumptions (A1
′

), (A2
′

) and (A3),
next theorem offers necessary and sufficient con-
ditions, which are sharper and more useful than
those of Theorem 4.1, to guarantee that a hyper-
bolic or a saddle-node equilibrium point lie on the
stability boundary of a nonlinear autonomous dy-
namical system.

Theorem 4.2 (Further characterization of

the hyperbolic and saddle-node equilibrium

points on the stability boundary): Let p be an
equilibrium point of (1). Suppose also, the exis-
tence of an asymptotically stable equilibrium point
xs and let A(xs) be its stability region. If assump-
tions (A1

′

), (A2
′

) and (A3) are satisfied. Then
the following holds:

(i) If p is a hyperbolic equilibrium point, then the
following statements are equivalent:

(a) p ∈ ∂A(xs)

(b) Wu(p) ∩A(xs) 6= ∅

(c) W s(p) ⊆ ∂A(xs)

(ii) If p is a type-k saddle-node equilibrium point,
then the following statements are equivalent:

(a) p ∈ ∂A(xs)

(b)

{

W c+(p) ∩A(xs) 6= ∅ if k = 0

W cu+

(p) ∩A(xs) 6= ∅ if 1 ≤ k ≤ n− 1

(c) W s(p) ⊆ ∂A(xs) if n− k ≥ 2

The proof is omitted due to space limitation.
Next theorem offers a characterization of

the stability boundary of nonlinear autonomous
dynamical systems in the presence of saddle-
node equilibrium points on the stability boundary
∂A(xs).

Theorem 4.3 (Stability Boundary Charac-

terization): Let xs be an asymptotically stable
equilibrium point of (1) and A(xs) be its stability
region. If assumptions (A1

′

), (A2
′

) and (A3) are
satisfied, then:

⋃

i

W s(xi)
⋃

j

W s(pj)
⋃

l

W s(zl) ⊆ ∂A(xs) ⊆

⋃

i

W s(xi)
⋃

j

W s(pj)
⋃

l

W cs−(zl)
⋃

m

W c−(qm).

where xi are the hyperbolic equilibrium points, pj
the type-0 saddle-node equilibrium points, zl the
type-k saddle-node equilibrium points, with 1 ≤
k ≤ n − 2 and qm the type-(n − 1) saddle-node
equilibrium points on ∂A(xs), i, j, l,m = 1, 2, ....

The proof is omitted due to space limitation.
Figure 2 shows an example of a dynamical sys-

tem on R
3 where assumptions (A1

′

), (A2
′

) and
(A3) are satisfied. The unstable manifold of the
hyperbolic equilibrium points x1 and x2 intersect
the stability region A(xs) and, according to The-
orem 4.2, these equilibrium points belong to the
stability boundary ∂A(xs). The unstable compo-
nent of the unstable center manifold of the type-1
saddle-node equilibrium point p intersects the sta-
bility region A(xs) and according to Theorem 4.2,
this equilibrium also lies on the stability boundary
∂A(xs).

It can be seen in Figure 2 that despite of
conditions (A1

′

), (A2
′

) and (A3) being satisfied,
the unstable manifold of the type-1 saddle-node
equilibrium point p does not intesect the stability
region A(xs). Consequently, assumptions (A1

′

),
(A2

′

) and (A3) are not sufficient to ensure that
unstable manifolds of type-1 saddle-node equilib-
rium points on the stability boundary ∂A(xs) in-
tersect the stability region A(xs). Imposing this
additional condition, i.e. the unstable manifold of
the equilibrium points on the stability boundary
intersect the stability region, next theorem offers a
complete characterization of the stability bound-
ary of a nonlinear autonomous dynamical systems
in the presence of saddle-node equilibrium points
on the stability boundary ∂A(xs).

x1 x2p

xs

∂A(xs)

Figure 2: Stability region and its boundary of an

asymptoticaly stable equilibrium point xs on R
3.

Theorem 4.4 (Stability Boundary Charac-

terization): Let xs be an asymptotically stable
equilibrium point of (1) and A(xs) be its stability
region. If assumptions (A1

′

) and (A3) are satis-

fied and W c+(pj) ∩ A(xs) 6= ∅, for all j = 1, 2, ...
and the unstable manifolds of all other equilibrium
points on the stability boundary ∂A(xs) intersect
the stability region A(xs), then:

∂A(xs) =
⋃

i

W s(xi)
⋃

j

W s(pj)
⋃

l

W cs−(zl)

⋃

m

W c−(qm)

where xi are the hyperbolic equilibrium points, pj
the type-0 saddle-node equilibrium points, zl the
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type-k saddle-node equilibrium points, with 1 ≤
k ≤ n − 2 and qm the type-(n − 1) saddle-node
equilibrium points on ∂A(xs), i, j, l,m = 1, 2, ...

The proof is omitted due to space limitation.
Theorem 4.4 is more general than Theorem

3.3, since assumption (A1), used in the proof of
Theorem 3.3, is relaxed. It also generalizes the re-
sults in [3] where only type-zero saddle-node equi-
librium points were considered.

5 Example

The system of differential equations (2) was de-
rived from problems of stability in power systems
analysis:

ẋ = 1− 2.84 sin(x)− 2 sin(x− y)
ẏ = 1− 3 sin(y)− 2 sin(y − x)

(2)

The stability region and stability boundary
of this system will be illustrated and the re-
sults of Theorem 4.4 will be verified. System
(2) possesses an asymptoticaly stable equilibrium
point xs = (0.35; 0.34) and two type-1 saddle-
node equilibrium points on the stability bound-
ary ∂A(xs), they are; q1 = (1, 42; 3, 39) and
q2 = (2, 12;−3, 87). Moreover, eight unstable
hyperbolic equilibrium points also belong to the
stability boundary ∂A(xs). The stability bound-
ary ∂A(0, 35; 0, 34) is formed, according to Theo-

rem 4.2, as the union of the manifolds W c−(q1),

W c−(q2) and the stable manifolds of the unstable
hyperbolic equilibrium points that belong to the
stability boundary, see Figure 3.

Figure 3: The gray area is the stability region of the

asymptotically stable equilibrium point xs. The sta-

bility boundary ∂A(0, 35; 0, 34) is formed of the stable

component of the center manifolds of the saddle-node

equilibrium points q1 and q2 union with the stable

manifolds of all the unstable hyperbolic equilibrium

points that belong to the stability boundary.

6 Conclusions

This paper developed the theory of stability re-
gions of nonlinear dynamical systems by general-

izing the existing results on the characterization
of the stability boundary of asymptotically stable
equilibrium points. The generalization developed
in this paper considers the existence of a partic-
ular type of non-hyperbolic equilibrium point on
the stability boundary, the so called saddle-node
equilibrium point. Necessary and sufficient condi-
tions for a saddle-node equilibrium point lying on
the stability boundary were presented. A com-
plete characterization of the stability boundary
when the system possesses saddle-node equilib-
rium points on the stability boundary was devel-
oped for a large class of nonlinear dynamical sys-
tems. This characterization is an important step
to study the behavior of the stability boundary
and stability region under the influence of param-
eter variation.
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