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Redes são sistemas tecnológicos, físicos, biológicos ou sociais caracterizados por um conjunto
grande de entidades bem definidas que interagem dinamicamente entre si, como por exemplo:
Internet e a Web. As redes físicas incluem, por exemplo, as redes de distribuição de energia e
de água, as redes de transporte; as redes sociais podem ser vistas como redes de relacionamento
pessoal/profissional, de comunidades, de pesquisadores, de publicações e as redes biológicas como
cadeias alimentares e de transmissão de doenças. Por isso, compreender as suas estruturas, comuni-
dades, funções, interações e propriedades torna-se de fundamental importância para se pensar como
pode se manter a funcionalidade dessas redes. Por isso, o interesse da comunidade científica com
relação ao estudo e a modelagem de redes vem aumentando significativamente nos últimos anos. A
estrutura de uma rede pode ser modelada por um grafo, [1]. Um grafo é um par G = (V (G), E(G)),
onde V (G) é um conjunto finito cujos elementos são denominados vértices e E(G) é um conjunto de
subconjuntos de dois elementos de V (G), cujos elementos são denominados de arestas. O grafo G
é de ordem n quando |V (G)| = n. Quando os vértices e as arestas de uma rede têm um significado
que coincide com a nossa realidade denominamos esta rede de rede complexa. Atualmente, existem
diversos problemas envolvendo redes complexas e dentre eles podemos destacar a determinação dos
elementos mais importantes da rede, utilizando, por exemplo, as medidas de centralidade, como
Autovetor (Eigenvector), Informação (Degree), Proximidade (Closeness), Intermediação (Betwe-
enness), Intermediação de Fluxo (Flow Betweenness), [2], [3], [4] e [7].

Convém observar que grafos podem ser representados por várias matrizes de ordem n como por
exemplo: Matriz de adjacência, A(G) = [aij ], onde aij = 1 se existe uma aresta entre os vértices
vi e vj , e caso contrário aij = 0; e a matriz diagonal dos graus D(G) = [dii] = [d(vi)], onde d(vi)
representa quantas arestas incidem no vértice vi. Em 2017, Nikiforov [6] definiu a matriz Aα de
um grafo como sendo uma combinação linear convexa entre sua matriz de adjacência e sua matriz
dos graus da seguinte maneira:

Aα(G) = αD(G) + (1− α)A(G), (1)

Onde α ∈ [0, 1]. Essa matriz pode sustentar o estudo espectral(via autovalores) das matrizes
de adjacência e de graus de um grafo pois A0(G) = A(G) e A1(G) = D(G).
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Considerando a matriz de adjacência, A(G), e λ(A(G)) o maior autovalor associado a esta
matriz, as soluções não nulas da equação:

A(G)x = λ(A(G))x (2)

São denominadas de autovetores de A(G) associados ao autovalor λ(A(G)). De acordo com
Horn et. al [5], existe um autovetor x = (x1, . . . , xn) associado a λ(A(G)) cujas coordenadas são
todas positivas. A Medida de Centralidade de Autovetor de um vértice vi do grafo G, denotada por
CE(vi), é definida por xi. Quanto maior for o valor de xi, maior é a influência do vértice vi na rede
que é modelada pelo grafo G e consequentemente mais central é o vértice em relação aos outros.
Já a Medida de Centralidade de Informação (Grau) do vértice vi, denotada por CD(vi), é dada em
função da quantidade de vértices que está diretamente ligada a ele, ou seja, CD(vi) = d(vi). Como
d(vi) é dado pelo somatório da i- ésima linha da matriz de adjacência, temos que CD(vi) pode
ser reescrito da seguinte maneira: CD(vi) =

∑n
j=1 aij . O vértice mais central de acordo com esta

medida é o que possui maior valor de CD(vi), visto que ela mede o efeito imediato ou a influência
imediata de um vértice em relação aos demais.

Neste trabalho, introduzimos uma nova medida espectral de centralidade, denominada de Aα-
autovetor, baseada no autovetor x = (x1, . . . , xn) associado ao maior autovalor da matriz Aα(G),
λ(Aα(G)). A Medida de Centralidade de Aα-autovetor de um vértice vi do grafo G, denotada por
Cα-eig(vi), é definida da seguinte maneira:

Cα-eig(vi) =
1

λ
(
Aα(G)

)
αd(vi) + (1− α)

∑
{vj ,vi}∈E(G)

xj

 . (3)

Esta Medida de Centralidade leva em conta tanto a importância dos vizinhos do vértice quanto
o grau do vértice em questão. Além disso, apresentamos uma comparação de desempenho da
medida de centralidade Aα-autovetor com a medidas de centralidade de Autovetor e de Informação
em algumas redes reais e em algumas famílias de grafos.
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