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Sejam K um corpo de números de grau n > 1 e α ∈ K. O elemento α é chamado um inteiro
algébrico se é raiz de um polinômio mônico com coeficientes em Z. Seja OK o anel dos inteiros
algébricos de K, ou seja, o conjunto

OK = {α ∈ K : tal que α é raiz de um polinômio mônico f(x) ∈ Z[x]}.

O anel OK é um Z-módulo livre de posto n e uma base de OK é chamada de uma base integral de
K. [1] Um reticulado L ⊂ Rn de dimensão k é definido como L = BZk, onde 1 ≤ k ≤ n e B é uma
matriz n× k de posto k. Um reticulado L possui posto completo se k = n.

Os reticulados são estruturas geométricas amplamente utilizadas em aplicações de problemas
como empacotamento esférico, códigos e criptografia pós-quântica. Uma maneira de obter reti-
culados é utilizando ferramentas da Teoria Algébrica dos Números e os calculando a partir de
corpos de números; estes reticulados são chamados reticulados algébricos. Há várias propriedades
que podem ser exploradas na Teoria dos Reticulados, como por exemplo os reticulados cíclicos,
que recentemente apareceram em trabalhos de criptografia [3] [4]. Essa aplicação na criptografia
baseada em reticulados motiva o estudo mais aprofundado deles, como o que foi feito em [2].

Considere R+ o conjunto dos números reais positivos e On(R) o grupo das matrizes reais
ortogonais n × n. Dois reticulados em Rn, L1 e L2, são ditos similares, se existe α ∈ R+ e
U ∈ On(R) tais que L2 = αUL1. Denotamos dois reticulados similares por L1 ∼ L2.

Nosso principal objetivo, neste trabalho, são os reticulados cíclicos, que são definidos da seguinte
forma: Um reticulado L ⊂ Rn, não necessariamente de dimensão completa, é chamado de cíclico
em Rn se é fechado sob a operação linear rotação shift ρ : Rn → Rn, dada por

ρ(c1, c2, . . . , cn) = (cn, c1, . . . , cn−1), (1)

isto é, se ρ(L) = L. A propriedade de ser cíclico não é preservada sob a relação de similaridade.

Um contraexemplo é o reticulado inteiro Z2 que é cíclico e similar ao reticulado
[
1 −a
a 1

]
Z2, que

por sua vez não é cíclico para nenhum a /∈ Q.
A conexão entre similaridade e reticulados cíclicos é dada pelo fato de que um reticulado do

posto completo L ⊂ Rn é similar a um reticulado cíclico se, e somente se, L tem uma isometria
com o polinômio minimal xn − 1. Esse resultado é fácil verificação, uma vez que o operador ρ é
uma isometria cujo minimal é xn − 1, isto é, ρn = I e nenhum polinômio de grau menor que n
anula ρ.

Uma classe importante de reticulados são obtidos via o anel de inteiros de um corpo de números,
por isso é interessante verificar sob quais hipóteses esses reticulados são cíclicos.
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Seja K um corpo de números de grau n = r1 + 2r2 com os monomorfismos

σ1, . . . , σn : K ↪→ C,

onde r1 são totalmente reais e 2r2 são totalmente complexos. O traço de um elemento α ∈ K
é definido por TrK(α) = σ1(α) + · · · + σn(α). O conjunto KR = K ⊗Q R pode ser visto como
subespaço de Rr1 × C2r2 ⊆ Cn, dado por (a menos da permutação das coordenadas)

{(x,y) ∈ Rr1 × C2r2 : yr2+j = yj ∀ 1 ≤ j ≤ r2} ∼= Rr1 × Cr2 ⊆ Cn.

O conjunto KR é um espaço euclidiano com respeito a forma bilinear induzida pelo traço ⟨α, β⟩ no
corpo de números K dada por ⟨α, β⟩ := TrK(αβ) ∈ R, para quaisquer α, β ∈ K, onde TrK é o traço
definido no corpo de números K.

Seja a aplicação φK : K → KR definida por φK(x) = (σ1(x), . . . , σn(x)). O anel de inteiros OK é
um reticulado de posto completo em KR sob essa aplicação. Denotamos ΛK para a imagem φK(OK).
Equivalentemente, podemos descrever ΛK como um Z-módulo livre OK com a forma bilinear ⟨·, ·⟩.
Seja Aut(ΛK) o grupo de automorfismos do reticulado ΛK, isto é, o grupo de isometrias dessa
forma bilinear induzida pelo traço. Em [2] é determinado quando o anel de inteiros de um corpo
de números galoisiano é cíclico:

Teorema: Suponha que K/Q seja uma extensão de Galois com grupo de Galois G. Assim,
ΛK é cíclico se, e somente se, K/Q for uma extensão cíclica com G = ⟨σ⟩, onde o automorfismo
σ : K → K satisfaz ρ(φK(α)) = φK(σ(α)) para todo α ∈ OK .

A analise que está sendo feita é quando os submódulos (ou ideais) de OK são cíclicos. A
princípio, este estudo tem sido feito quando consideramos homomorfismo canônico dado por:

σ(x) = (σ1(x), . . . , σr1(x), σr1+1(x)), . . . , σr1+r2(x)) . (2)

A aplicação σ é um monomorfismo de K em Rn, onde cada σi é um monomorfismo de K em R.
Com base nesses resultados, provamos o seguinte fato. Se K = Q(

√
d), com d > 0, então OK

tem base integral {1,
√
d}. Seja o submódulo M ⊂ Ok dado por M = ⟨u + v

√
d, x + y

√
d⟩. O

reticulado σ(M) é cíclico quando u = x, v = −y. Neste caso, é suficiente considerar u ̸= 0 e
v ̸= 0. Analogamente, para o caso d < 0, isto é, quando K = Q(i

√
d), d > 0. Neste caso, não existe

reticulado algébrico cíclico, exceto quando d = 1. Além disso, apresentamos uma generalização
para outros módulos contidos no anel de inteiros de corpos de números cíclicos, ou seja, quando o
grupo de Galois é cíclico.
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