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Seja N uma superficie fechada e orientada com género n > 0. Um emparelhamento de
arestas de um poligono regular P,, com n = 2A lados chamados de arestas, separadas por
pontos chamados de vértices, ¢ uma aplicacdo quociente ¢ : P, — N [3]. A imagem do bordo
de P,, pode ser associada a um grafo G = (V, A), mergulhado em N, onde a aplicacdo ¢ leva
pares de arestas (Fi,l"fl) de P, em uma aresta 7; de G e leva k vértices {uy,---,ux} de P,
(k > 2) sobre um vértice v de G (ver Figura 1). O ntmero k corresponde ao grau do vértice u.
Um grafo G mergulhado em N é dito grafo do emparelhamento de arestas se existe uma
aplicagdo quociente ¢ : P, — N tal que G coincide com a imagem do bordo de P,. Ou seja,
um grafo é de emparelhamento de arestas se, e somente se, seu complemento em relacdo a N
é homeomorfo a um disco. Em [5] os autores chamaram o emparelhamento cujo grafo tem um
anico vértice de emparelhamento candnico. Em [2] os autores introduziram duas cirurgias de
emparelhamento de arestas, chamadas de cirurgia vertical e cirurgia horizontal. Estas cirurgias
permitem determinar familias de grafos de emparelhamento de arestas sobre uma superficie W =
M#N, a partir de dois grafos de emparelhamento G; e Go, mergulhados nas respectivas superficies
fechadas e orientadas M e N. Mais tarde, em [5] os autores introduziram a extensao e a contragao
de grafos de emparelhamento de arestas sobre uma superficie fechada e orientada. Com essa
técnica mostraram que qualquer grafo de emparelhamento de arestas sobre uma superficie N pode
ser obtido por uma sequéncia de extensoes de um grafo de emparelhamento canénico sobre N.

Figura 1: Exemplos de emparelhamentos de arestas de Pip no Bitoro. Fonte: Retirada de [7]

Sejam I' = U7_;S!, a unido de r circulos, r > 1, e f : I' = N uma imersao de I' em N.
Denotamos por By = f(T') a imagem de I' por f e por C*°(T", N) o conjunto de todas as aplicagbes
suaves f: ' — N.
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e Uma aplicacao f € C™(T', N) sera dita estavel se todas as autointersecoes em B, chamados
de pontos duplos, sdo transversais [1, 4]. Ou seja, By nao tem pontos de tangéncias ou outras
singularidades além de possiveis pontos duplos transversais e isolados. O conjunto de todas as
aplicagoes estaveis sera denotado por E(I', N).

e Duas aplicagoes suaves f,h € C>(I', N) sdo ditas homotopicas se existe uma aplicagdo H :
I' x [0,1] — N continua, tal que H(x,0) = h(x) e H(x,1) = f(x), para todo € T'. Uma aplicacao
f: T — N sera dita aplicacao planar se f é homotopica a alguma aplicagao h : I' — N, tal que
h(I') C Dy, onde Dy denota uma regido simplesmente conexa de N (ver Figura 2).

A proposta deste trabalho é apresentar uma condicao necessaria para que uma dada aplicagao
estavel f : I' — N seja uma aplicagao planar. Para isso vamos considerar um grafo G de algum
emparelhamento de arestas em N, que serd dito transversal ao conjunto de curvas By em N se o
conjunto de intersegao G N By é vazio ou se p € G N By entdao p nao ¢ um vértice de G e nem um
ponto duplo de By, além disso a intersecao entre By e G em p ocorre de forma transversal [6]. O
niumero de pontos na intersecdo entre By e G sera denotado por #{G N By}. Os graus dos vértices
de G e o nimero #{GN By} fornece uma condigao necesséaria para que f seja uma aplicacao planar.

Figura 2: Curvas fechadas no Tritoro: (a) nao planar; (b) e (c) curva planar. Fonte: Imagem autoral
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