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Grafos e Curvas em Superfícies
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Seja N uma superfície fechada e orientada com gênero n > 0. Um emparelhamento de
arestas de um polígono regular Pn, com n = 2A lados chamados de arestas, separadas por
pontos chamados de vértices, é uma aplicação quociente ϕ : Pn → N [3]. A imagem do bordo
de Pn pode ser associada a um grafo G = (V,A), mergulhado em N , onde a aplicação ϕ leva
pares de arestas (Γi,Γ

−1
i ) de Pn em uma aresta γi de G e leva k vértices {u1, · · · , uk} de Pn

(k ≥ 2) sobre um vértice u de G (ver Figura 1). O número k corresponde ao grau do vértice u.
Um grafo G mergulhado em N é dito grafo do emparelhamento de arestas se existe uma
aplicação quociente ϕ : Pn → N tal que G coincide com a imagem do bordo de Pn. Ou seja,
um grafo é de emparelhamento de arestas se, e somente se, seu complemento em relação a N
é homeomorfo a um disco. Em [5] os autores chamaram o emparelhamento cujo grafo tem um
único vértice de emparelhamento canônico. Em [2] os autores introduziram duas cirurgias de
emparelhamento de arestas, chamadas de cirurgia vertical e cirurgia horizontal. Estas cirurgias
permitem determinar famílias de grafos de emparelhamento de arestas sobre uma superfície W =
M#N , a partir de dois grafos de emparelhamento G1 e G2, mergulhados nas respectivas superfícies
fechadas e orientadas M e N . Mais tarde, em [5] os autores introduziram a extensão e a contração
de grafos de emparelhamento de arestas sobre uma superfície fechada e orientada. Com essa
técnica mostraram que qualquer grafo de emparelhamento de arestas sobre uma superfície N pode
ser obtido por uma sequência de extensões de um grafo de emparelhamento canônico sobre N .

Figura 1: Exemplos de emparelhamentos de arestas de P10 no Bitoro. Fonte: Retirada de [7]

Sejam Γ = ∪r
i=1S1i , a união de r círculos, r ≥ 1, e f : Γ → N uma imersão de Γ em N.

Denotamos por Bf = f(Γ) a imagem de Γ por f e por C∞(Γ, N) o conjunto de todas as aplicações
suaves f : Γ → N.
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• Uma aplicação f ∈ C∞(Γ, N) será dita estável se todas as autointerseções em Bf , chamados
de pontos duplos, são transversais [1, 4]. Ou seja, Bf não tem pontos de tangências ou outras
singularidades além de possíveis pontos duplos transversais e isolados. O conjunto de todas as
aplicações estáveis será denotado por E(Γ, N).
• Duas aplicações suaves f, h ∈ C∞(Γ, N) são ditas homotópicas se existe uma aplicação H :
Γ× [0, 1] → N continua, tal que H(x, 0) = h(x) e H(x, 1) = f(x), para todo x ∈ Γ. Uma aplicação
f : Γ → N será dita aplicação planar se f é homotópica a alguma aplicação h : Γ → N , tal que
h(Γ) ⊂ DN , onde DN denota uma região simplesmente conexa de N (ver Figura 2).

A proposta deste trabalho é apresentar uma condição necessária para que uma dada aplicação
estável f : Γ → N seja uma aplicação planar. Para isso vamos considerar um grafo G de algum
emparelhamento de arestas em N , que será dito transversal ao conjunto de curvas Bf em N se o
conjunto de interseção G ∩ Bf é vazio ou se p ∈ G ∩ Bf então p não é um vértice de G e nem um
ponto duplo de Bf , além disso a interseção entre Bf e G em p ocorre de forma transversal [6]. O
número de pontos na interseção entre Bf e G será denotado por #{G ∩ Bf}. Os graus dos vértices
de G e o número #{G∩Bf} fornece uma condição necessária para que f seja uma aplicação planar.

(a) (b) (c)

Figura 2: Curvas fechadas no Tritoro: (a) não planar; (b) e (c) curva planar. Fonte: Imagem autoral
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