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Abstract

In this contribution we present our recent results where we have applied a modified form
of Riemann-Liouville fractional derivative to build up a generalized fractional D’Alembertian
and by means of a transformation of variables to light-cone coordinates, an explicit analytical
solution was obtained. We have also set up the coarse-grained formulation of a fractional
Schrödinger equation that incorporates a higher (spatial) derivative term which accounts for
relativistic effects up to the lowest order in momentum.
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1 Introduction

In recent works we have argued that the modeling of TeV-physics may demand an approach
based on fractal operators and fractional calculus (FC) and we claimed that, in the realm of
complexity, nonlocal theories and memory effects were connected to complexity and also that
the FC and the nondifferentiable nature of the microscopic dynamics may be connected with
time scales. Using the modified Riemann-Liouville (MRL) definition of fractional derivatives,
we have worked out explicit solutions to a fractional wave equation (FWE) with suitable initial
conditions to carefully understand the time evolution of classical fields with fractional dynamics.
First, by considering space-time partial fractional derivatives of the same order in time and space,
a generalized fractional D’Alembertian is introduced. By means of a transformation of variables
to light-cone coordinates, an explicit analytical solution was obtained. Also, aspects connected
with Lorentz symmetry were analyzed by using two different approaches.

To justify the coarse-grained approach we can see that it seems that a reasonable way to
probe the classical framework of physics is to remark that, in the space of our real world, the
generic point is not infinitely small (or thin), it rather has a finite size.

Also, we have pursued an investigation of the coarse-grained fractional Schrödinger equation
(FSE), corrected by a fourth spatial derivative term which accounts for lowest power in momen-
tum (relativistic) correction to the kinetic energy term. The corresponding continuity equation
was worked out and we had also identified the contribution of the relativistic correction to the
quantum potential in the coarse-grained treatment. As a consequence, in the classical regime,
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we derived the sort of fractional Newtonian law with the quantum potential included. The frac-
tional counterparts of the De Broglie’s energy and momentum relations were also presented and
discussed. An attempt to formulate equations that describe dispersion relations for massless
particles and refraction index for a coarse-grained medium was presented.

2 Fractional D’Alembertian of same space-time partial deriva-
tive order

The D’Alembertian can now be established as:

∂α

∂xα
∂α

∂xα
φ (x, t)− 1

v2α

∂α

∂tα
∂α

∂tα
φ (x, t) = 0, 0 < α < 1 (1)

Proceeding now a variable change in a light cone, right and left movers, respectively, we can
write ξ = x− vt and η = x+ vt.

Assuming a non-differentiable space of solutions, the chain rule in the MRL sense is[2]

dα

dxα f [u(x)] = dαf
duα

(
du
dx

)α
. After some algebraic manipulations, we obtain

∂α

∂ξα
∂α

∂ηα
φ (ξ, η) = 0.

Solutions in the light-cone coordinates:

The form of the Eq. (1) suggests a solution of the form, as in the case of integer derivatives:

φ̃(ξ, η) = f(ξ) + g(η), subject to the initial conditions φ(x, 0) = F (x),
∂αφ(x, t)

∂tα

∣∣∣∣
t=0

≡ G∗(x).

According to the initial conditions, F (x) = f(x) + g(x).
We have then found the functional forms of f and g, so that the general solution for a general

instant of time, t, can be expressed for φ (ξ, η) .The expression is long and can be found in our
reference[1].

The general result can indicate that a regularized definition could give a option to conserve
the parity or the chiral properties of the field.

In the sequence we propose an alternative approach by considering fractional space–time
instead of fractional space functions, that is, we consider that a coarse-grained space–time,
which means that space and time are non-differentiable and considering the chain rule as [2]
dα

dxα f [u(x)] = d
duf

dα

dxαu.
It can be shown that the ansatz φ = φ(xα+λtβ) is a solution of the FWE in a coarse-grained

space-time [2], subject to the condition λα,β = ±vβ Γ(α+1)
Γ(β+1) .

The result above gives the insight to redefine the light-cone variables ξ, η as ξ = xα − λtβ
and η = xα + λtβ.

With the chain rule in the MRL sense, after some algebraic manipulations, we obtain a simple

form
∂2

∂ξ∂η
φ (ξ, η) = 0, subject to the above conditions, permits to apply the same procedure

used previously. The result is an expression for φ (ξ, η)[1].
The advantage of this approach, in a fractional coarse grained space-time, is that there is no

violation of chirality and it opens the perspective to study higher orders derivatives in fractional
space-time.

The introduction of higher derivatives yields the so-called negative squared-norm ghost
states. Here, we argue that the presence of fractional higher derivatives might remove the
problem of these unphysical modes.

3 Lorentz transforms and invariance conditions

Considering now the fractional front wave as

c2α(tα)2 − (xα)2 − (yα)2 − (zα)2 = c2α(tα)2 = c2α(t′α)2 − (x′α)2 − (y′α)2 − (z′α)2, (2)

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0209 010209-2 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0209


we suppose a fractional transformation of form x′α = γα,β(xα− λtβ) and t′β = γα,β(tβ − λ
c2β
xα).

The inverse transform can directly be obtained as xα = γα,β(x′α + λt′β), tβ = γα,β(t′β +
λ
c2β
x

′α).
From Eq. (2), with the transformations above, we are lead to a fractional gamma factor

which reads as γα,β = (1− λ2α,β
c2β

)−1/2.

Fractional Lorentz transform invariance for coarse-grained space-time

We can show that a function of φ(xα, tβ) is a solution of the FWE. It can be shown that this
wave equation is Invariant to Fractional Lorentz transform [1].

Standard Lorentz invariance for non-differentiable space of solutions

It can also be proved that in the space of non-differentiable solutions, the FWE is Lorentz
invariant by standard Lorentz transforms, if exponents of fractional derivatives in space and
time are equal to each other [1].

4 An explicit example of solution

As an illustrative example, let us take our initial conditions as F (x) = φ(x, 0) = 	(x)	 (1− x),

where 	(x) is the Heaviside function and,
∂αφ(x, t)

∂tα

∣∣∣∣
t=0

≡ G∗(x) = 0.

The solution obtained represents two well localized propagating rectangular pulses, propa-
gating in opposite directions, with different attenuation parameters that depends on the chirality
and the fractional exponent. Again, if the fractional exponent is one of those that preserves the
chiral symmetry, the solution is identical to the case of an integer exponent.

For the case of fractional space-time, the solutions is similar for this example but with
different space and time scales with the chiral symmetry preserved.

5 The Fractional Klein Gordon Equation

The fractional Klein Gordon equation (FKGE) can be written here as:

1

c2β

∂2β

∂t2β
ψ (x, t)−M2

x,α

∂2α

∂x2α
ψ (x, t) +

m2βc2β

~2β
ψ (x, t) = 0. (3)

The diffusion factor, Mx,α, is here introduced for dimensional consistency reasons. This
equation has also to be consistent with an fractional relativistic energy-momentum equation,
given by Eβ =

√
p2αc2α +m2βc4β.

6 Fractional Schrödinger Equation with Lowest-Order Relativis-
tic Correction

Here we obtain the lowest-order relativistic correction to a FSE, with different orders for the
fractional derivatives in time and space.This is carried out with the use of a FKGE.

We develop fractional relativistic energy-momentum equation in McLaurin’s series by taking
f(x) = (1 + xα,β)1/2 and assuming that f (αk)(x) has a sequential character like f (2α)(x) =
∂2α

∂x2α
= ∂α

∂xα
∂α

∂xα .

Here, we propose the operators: Êβ = i (~)β ∂β

∂tβ
and p̂α = −i (~)αMx,α

∂α

∂xα .
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After soma algebra, we are lead to one possible representation of the fractional Schrödinger
equation given by

i (~)β
∂βψ (x, t)

∂tβ
= −M2

x,α

~2α

2mβ

c2α

c2β

∂2αψ (x, t)

∂x2α
+ Vα,βψ (x, t)− 1

8
M4
x,α

~4α

m3β

c4α

c6β

∂4αψ (x, t)

∂x4α
(4)

7 Fractional Continuity Equation

We have found a fractional continuity equation, where the probability is defined as usually:
P = ψ∗ (x, t)ψ (x, t) .

After some algebra, we can be write ∂βρ (x, t)

∂tβ
+
∂αJ(x, t)

∂xα
= 0 where ρ (x, t) ≡ ψ∗ (x, t)ψ (x, t) .

The expression for J can be found in ref. [3].
The above continuity equation shows that the probability is conserved in the fractional sense.

Taking α = β = 1, we obtain the integer continuity equation with the lowest-order relativistic
correction.

8 Fractional Quantum Potential with Lowest-Order Relativistic
Correction terms

Now, we shall build up the fractional Bohmian equations, by parameterizing the solution of
eq.(4) as Ψ(r, t) = R(r, t)eiS(r,t)/~,where R and S are the amplitude of probability density and
phase of Ψ, respectively, both being real-valued functions. Substituting this relation into the
FSE and multiplying by e−iS(r,t)/~, after some algebra and taking real and imaginary parts,
we get two equations that lead to a fractional version of Bohmian Mechanics, including the
its lowest-order relativistic correction limit. The fractional quantum potential, Qα(x, t), was
identified due to the presence of Planck constant. The long expression is omitted here.

With some more algebra we have also obtained the expression

− ∂α

∂xα
(Qα(x, t) + V ) =

∂α

∂xα

[
M2
x,α

~2α

2mα

1

~2

(
∂αS

∂xα

)2

− 1

8
M4
x,α

~4α

m3α

1

c2α

1

~4
(S(α))4

]
+~α−1 ∂

α

∂tα
∂αS

∂xα
.

(5)
Defining the fractional moment as pα = Mx,α~α−1 ∂αS

∂xα , and with a similar definition of the

fractional velocity, that relates it to a fractional linear momentum, vα =
(
dx
dt

)α
= λα,βpα,with

λα,β =
(
Mx,α

cα

cβ

)−1
, we shall have that − ∂α

∂xα (Qα(x, t) + V ) ≡ Fα, where Fα is defined as the
fractional force. The equation above gives us a Newtonian-like fractional dynamical equation,
that coincides with dαpα

dtα if α = 1 and we do not consider the higher order term.
We define the fractional mechanical energy and the kinetic energy, respectively, as Eα(x, t) =

−~α−1 ∂
αS(x,t)
∂tα , and Kα(x, t) = M2

x,α
~2α
2mα

1
~2
(
∂αS
∂xα

)2 − 1
8M

4
x,α

~4α
m3α

1
c2α

1
~4 (S(α))4.

In terms of these and the quantum potential, we can rewrite Eα(x, t) = Kα(x, t)+Qα(x, t)+
V.

It is important to notice that, if we make a = 1, all the results are in complete agreement
with standard Bohmian mechanics with the inclusion of lower relativistic correction terms.

The expressions for the fractional moment and the fractional energy open up the possibility
for the attainment of anomalous dispersion relations.

Another point to highlight concerns energy conservation. If we assume for the phase S a
dependence like a power of time, S (x, t) = ~(f − ωαtα), where ωα is a multiplicative constant
and f is some functions depending explicitly only on x, then we obtain for the fractional energy
Eα(x, t) = −~α−1 ∂

αS(x,t)
∂tα = ~αΓ(α+1)ωα, that is a constant. The fractional energy is conserved,

provided an appropriate choice of phase is made.
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De Broglie relations

In what follows, we argue that fractional De Broglie relations in the coarse-grained context
naturally emerge from the energy-phase and momentum-phase relationship .

If we write for the phase S a dependence like a power of time, S (x, t) = ~ [kαxα ± ωαtα] ,

we have the fractional energy Eα(x, t) = −~α−1 ∂
αS(x,t)
∂tα = ~αΓ(α + 1)ωα, for the energy, which

is a fractional Planck-type energy relation. This concept has already been proposed in the
literature, in the context of soft matter. The expression above indicates that the Planck quantum
energy relation may describe a fractional package of energy, changed from the usual one by the
imposed fractionality of interactions and the medium. Notice that whenever α = 1, the usual
quantum energy E = ~ω is recovered. Now, with the phase S into kinetic energy equation gives
Kα(x, t) = M2

x,α
1

2mα
1
~2 [Γ(α+ 1)~αkα]2 +O

(
p4
)
.

This suggests a definition of the momentum as pα = Mx,αΓ(α + 1)~αkα, which reduces to
De Broglie relations of ordinary Quantum Mechanics for α = 1.

Anomalous Dispersion Relation for Massless Particles

Based on the fractional relativistic energy-momentum equation, with mα = 0, the dispersion
relation for a massless particle can be written as Eα =

√
p2αc2α; it is a non-linear relation.

As an example, one can write[3] [~αΓ(α + 1)]2ω2α = p2αc2α = M2
x,αΓ2(α + 1)~2αk2αc2α, or

simplifying, the dispersion relation can be cast in terms in terms of ωαand kα as ωα = Mx,αk
αcα.

9 Application: Group and Phase Velocities, The Dynamical
Evolution Equation for the Phase and the Medium Refrac-
tive Index

As a general application, we develop expressions for group and phase velocities. Also, a simple
dynamical evolution equation for the phase S is obtained and a connection with refractive index
of the medium is suggested.

The fractional group velocity can be written as vγg =
dγEα

(dpα)γ
=

Γ(α+ 1)

Γ(α− γ + 1)
pα−γcα, and

the phase velocity can be expressed as the ratio between fractional energy and momentum is

vph =
Eα

pα
= cα.

Comparing both expressions, we can see that the phase velocity and the group velocity are
equal only in the integer limit where α = γ = 1. Also, the group velocity has an non-linear
behavior for non-integer fractionality. The expressions above indicate that the propagation of
energetic particles in a coarse-grained medium might travel with a velocity cα, less than the
speed of light c in the trivial vacuum. We remark here that this was achieved without the
necessity to modification of Maxwell’s equations.

The the calculation of the group velocity is carried out with a different fractional order
derivative parameter γ (instead of α). We argue that we may be eventually trying to describe
the dynamics of a system with some slightly different fractional parameter. The fractionality
of the medium may have changed slightly in some way, due to perturbation interactions. The
changes, even if small, may give rise to the non-linear behavior described by the fractional
expression obtained above.

With the help of the dispersion relation for a massless particle obtained, we can write an
equation for the dynamical evolution of the phase S. Then, we write[3] ∂α

∂tαS (x, t)+Mx,α
∂αS
∂xα c

α =
0.

The canonical momentum-energy relation may be connected with the refractive index and can
be written as a reference equation, relating the photon propagation velocity in the coarse-grained
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medium and the standard velocity of light in the trivial vacuum. This indicates an energy-

dependent vacuum refractive index,
pα

Eα
= nα

c ,with nα being the refractive index for a coarse-

grained non-trivial optical medium. If the kinetic moments are considered, then
pα

Eα
= 1

nαc
.

The expressions above, may provide a mechanism to attain a refraction index for the medium
in a coarse-grained scenario and indicate there may be a close connection between fractionality
and anomalous dispersion relations for photons, in a coarse-grained medium.

10 Concluding Comments

In this contribution, we relate our recent results. We have obtained a FWE in terms of a
fractional D’Alembertian with a sequential form of MRL. With a particular choice of light-cone
coordinates along with the use of sequential MRL derivative, leading to technique that creates
a perspective to obtain solutions for other similar problems. Our solutions are worked out for
general initial conditions. Since we are choosing to work with non-differentiable functions or a
coarse-grained space-time, no use of distributional generalized functions or fractional powers of
operators, neither the maintenance of semi-group properties of exponents in the derivatives is
made. In each the cases of study the results agrees with standard integer order in the convenient
limits.

Complementary, we have explicitly shown that the FWE in terms of the non-differentiable
space-time is invariant under a Lorentz transform-like called fractional Lorentz transform, within
the conditions of equality for fractional orders of derivatives in space and in time. Similar results
from FWE in a non-differentiable space of solutions functions in terms of standard Lorentz
transform.

We have worked out a suggested version of a fractional Schrödinger equation, with a lowest-
order relativistic correction, obtained from a fractional wave equation [1] to which a mass term
has been adjoined, to give us a FKGE. With the definition of some fractional operators, the
McLaurin expansion and an ansatz for the plane wave solutions, we have obtained fractional
versions of Bohmian equations to describe the particle dynamics associated with Bohmian me-
chanics, in the space of non-integer differentiable functions. We have also presented a formulation
for an anomalous dispersion relation and to a refraction index, related to massless particle in
a coarse-grained media and a vacuum refractive index for a coarse-grained non-trivial optical
medium.

Also, a version of fractional De Broglie relations naturally comes out from our equations
and we recover the integer relations in the convenient limit. In connection with the probability
conservation, in the fractional case, we have worked out, to the lowest order in the relativistic
correction, the fractional probability current. The probability can be conserved in this nondif-
ferentiable space-time if we consider a fractional version of continuity equation that reduces to
the standard one in the integer limit or, in other words, integer dimensions.

We have also proposed a formulation for an anomalous dispersion relation and a refraction
index, related to massless particles in a coarse-grained medium and a vacuum refractive index
for a coarse-grained non-trivial optical medium, that may indicates that energetic particles in
a coarse-grained medium might travel with a velocity cα less than the corresponding one in a
non-interacting vacuum with speed of light c.
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