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Seja G = (V,E) um grafo simples, conexo, de ordem n e tamanho m. Para a terminologia
fundamental da teoria dos grafos, seguimos [2]. O número cromático de um grafo G é o menor
número de rótulos distintos que podem ser atribuídos aos seus vértices, de modo que vértices adja-
centes recebam rótulos diferentes. Em contextos mais recentes, surgiram variantes que consideram
rotulações de arestas, como a rotulação antimágica local. O estudo dessas rotulações fornece in-
formações estruturais adicionais sobre o grafo e apresenta aplicações em áreas como alocação de
frequência e criptografia.

Seja f : E → {1, 2, . . . ,m} uma bijeção sobre as arestas de G. Para cada v ∈ V , o peso
de v é dado por f+(v) =

∑
e∈E(v) f(e), onde E(v) denota o conjunto das arestas que incidem

em v. Quando f+(v) ̸= f+(u) para cada par de vértices u, v adjacentes em G, a bijeção f é
denominada rotulação antimágica local de G. Assim, qualquer rotulação antimágica local
induz uma rotulação dos vértices de G, definida pelos pesos f+(v) atribuídos a cada vértice v.
Um grafo G é dito antimágico local se G possui uma rotulação antimágica local. O número
cromático antimágico local de G, denotado por χla(G), é o menor número de pesos distintos
atribuídos aos vértices, considerando todas as possíveis rotulações antimágicas locais de G.

Considere o caminho P6, com vértices V = {v1, v2, v3, v4, v5, v6} e arestas E = {e1, e2, e3, e4, e5}.
Na Figura 1, apresentamos a rotulação antimágica local de P6, conforme [1], a qual determina seu
número cromático antimágico local.

f(e1) = 5 f(e2) = 1 f(e3) = 4 f(e4) = 2 f(e5) = 3

f+(v1) = 5 f+(v2) = 6 f+(v3) = 5 f+(v4) = 6 f+(v5) = 5 f+(v6) = 3

Figura 1: χla(P6) = 3. Fonte: autor.

Foi provado em [1] que, para toda árvore T com ℓ folhas, o número cromático antimágico
local satisfaz a desigualdade χla(T ) ≥ ℓ + 1. Além disso, os autores em [3] conjecturaram que
χla(T ) ≤ ℓ + 2 e propuseram uma caracterização das árvores em que χla(T ) = ℓ + 1. Motivados
por estes problemas, investigamos o número cromático antimágico local das árvores rosas perfeitas,
que definimos a seguir.

Dados inteiros positivos k e r, a árvore rosa perfeita Rk,r é obtida ao conectar o vértice
central de um caminho de ordem ímpar P2k+1 ao vértice central de uma estrela Sr de ordem r.

A seguir, enunciamos alguns dos resultados originais que obtivemos durante nossas pesqui-
sas e que respondem aos problemas enunciados acima para algumas subclasses das árvores rosas
perfeitas.
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Teorema 1. Dado r ≥ 4, o número cromático antimágico local da árvore rosa perfeita R4,r é dado
por χla(R4,r) = r + 2.

Ideia da demonstração. Considere R4,r cujo conjunto de vértices é V = {vi | i ∈ N, 1 ≤ i ≤ 9 + r}
e o seu conjunto de arestas é dado por E = {ei | i ∈ N, 1 ≤ i ≤ 8 + r}. Definindo a rotulação
antimágica local f : E → {1, 2, . . . , 8 + r} de acordo com a Tabela 1:

Tabela 1: Rotulação antimágica local f de R4,r.
i 1 2 3 4 5 6 7 8 9 (10 ≤ i ≤ 8 + r)

f(ei) 9 3 5 7 2 6 4 8 1 i

obtemos a rotulação induzida sobre os vértices de R4,r, f+ : V → {1, 2, . . . , 9 + r}, definida como
descrito na Tabela 2.

Tabela 2: Rotulação de vértices f+ induzida por f .
i 1 2 3 4 5 6 7 8 9 10 (11 ≤ i ≤ 9 + r)

f+(vi) 9 12 8 12 10 8 10 12 8 1 +
(r − 1)(r + 18)

2
i− 1

Comparando a quantidade de pesos distintos nos vértices com a cota inferior estabelecida em [1],
obtemos o resultado.

A Figura 2 exibe uma rosa perfeita R4,4 com a rotulação antimágica local de acordo com as
Tabelas 1 e 2. Note que vértices com pesos iguais possuem a mesma cor na figura.
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Figura 2: Árvore R4,4 com χla(R4,4) = 6. Fonte: autor

Conforme o Teorema 1, para verificar os resultados seguintes, foram construídas rotulações
antimágicas locais específicas para cada subclasse de Rk,r

Teorema 2. Se r ≥ 4, então χla(R5,r) = r + 2.

Teorema 3. Se k ≥ 6 e r ≥ 2k − 8, então χla(Rk,r) = r + 2.
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