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Numero Cromatico Antimagico Local de Algumas
Subclasses de Arvores Rosas Perfeitas
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Seja G = (V, E) um grafo simples, conexo, de ordem n e tamanho m. Para a terminologia
fundamental da teoria dos grafos, seguimos [2]. O nimero cromatico de um grafo G é o menor
ntmero de rotulos distintos que podem ser atribuidos aos seus vértices, de modo que vértices adja-
centes recebam rétulos diferentes. Em contextos mais recentes, surgiram variantes que consideram
rotulagbes de arestas, como a rotulacao antimagica local. O estudo dessas rotulagoes fornece in-
formacgoes estruturais adicionais sobre o grafo e apresenta aplicacbes em areas como alocagao de
frequéncia e criptografia.

Seja f : E — {1,2,...,m} uma bijegdo sobre as arestas de G. Para cada v € V, o peso
de v é dado por f*(v) = > ecr(v) f(€), onde E(v) denota o conjunto das arestas que incidem
em v. Quando f*(v) # f*(u) para cada par de vértices u,v adjacentes em G, a bijecao f é
denominada rotulagao antimagica local de G. Assim, qualquer rotulagdo antimégica local
induz uma rotulagao dos vértices de G, definida pelos pesos f¥*(v) atribuidos a cada vértice v.
Um grafo G é dito antimagico local se G possui uma rotulagao antimégica local. O ntmero
cromatico antimagico local de G, denotado por x;,(G), é o menor nimero de pesos distintos
atribuidos aos vértices, considerando todas as possiveis rotulagoes antiméagicas locais de G.

Considere o caminho Pg, com vértices V = {v1, va, v3, v4, U5, V6 } € arestas E = {eq, e, €3, €4, €5}.
Na Figura 1, apresentamos a rotulagio antimagica local de Pg, conforme [1], a qual determina seu
nimero croméatico antimagico local.
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Figura 1: x;,(Ps) = 3. Fonte: autor.

Foi provado em [1] que, para toda arvore T' com ¢ folhas, o ntumero cromético antimégico
local satisfaz a desigualdade y;o(T") > ¢+ 1. Além disso, os autores em [3] conjecturaram que
Xia(T) < £+ 2 e propuseram uma caracterizagdo das arvores em que (7)) = ¢+ 1. Motivados
por estes problemas, investigamos o nimero cromatico antiméagico local das arvores rosas perfeitas,
que definimos a seguir.

Dados inteiros positivos k e r, a arvore rosa perfeita Rj, é obtida ao conectar o vértice
central de um caminho de ordem impar Psj41 ao vértice central de uma estrela S, de ordem 7.

A seguir, enunciamos alguns dos resultados originais que obtivemos durante nossas pesqui-
sas e que respondem aos problemas enunciados acima para algumas subclasses das arvores rosas
perfeitas.
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Teorema 1. Dado r > 4, o niimero cromdtico antimdgico local da drvore rosa perfeita R4, € dado
por Xia(Rar) =7+ 2.

Ideia da demonstragdo. Considere Ry, cujo conjunto de vértices ¢ V = {v;|i e N1 <i<9+r}
e o seu conjunto de arestas é dado por E = {e;|i € N,1 < ¢ < 8 + r}. Definindo a rotulagao
antimagica local f : E — {1,2,...,8 + r} de acordo com a Tabela 1:

Tabela 1: Rotulagdo antiméagica local f de Ra,.

/) 1 2 3 4 5 6 7 8 9 (10<i<8+47)
Fle) 9 3 5 7 2 6 4 8 1 i
obtemos a rotulagao induzida sobre os vértices de Ry, fT:V — {1,2,...,9 + r}, definida como

descrito na Tabela 2.

Tabela 2: Rotulagio de vértices f induzida por f.

) 1 2 3 4 5 6 7 8 9 10 (11<i<9+4r)

ffv;) 9 12 8 12 10 8 10 12 8 1*% i—1

Comparando a quantidade de pesos distintos nos vértices com a cota inferior estabelecida em [1],
obtemos o resultado. O

A Figura 2 exibe uma rosa perfeita R4 4 com a rotulagdo antiméagica local de acordo com as
Tabelas 1 e 2. Note que vértices com pesos iguais possuem a mesma cor na figura.

e1 e es3 es €6 er €g €9

Figura 2: Arvore Ry 4 com xj4(R4,4) = 6. Fonte: autor

Conforme o Teorema 1, para verificar os resultados seguintes, foram construidas rotulagoes
antimagicas locais especificas para cada subclasse de Ry, ,

Teorema 2. Ser >4, entdo x1o(Rs,) =7+ 2.
Teorema 3. Se k> 6 er > 2k — 8, entao Xiqo(Rir) =1+ 2.
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