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Uma Nota Sobre Base Integral de um Corpo Cubico

Maria C. L. Taddone! Antonio A. de Andrade?
Unesp, Sao José do Rio Preto, SP

Sejam K um corpo de niimeros de graun > 1 e a € K. O elemento a é chamado um namero
algébrico se é raiz de um polinémio nao nulo com coeficientes em Q, e o elemento o é chamado
um inteiro algébrico se é raiz de um polindmio moénico com coeficientes em Z. Seja Ok o anel dos
inteiros algébricos de K, ou seja, o conjunto

Ox ={a€eK: tal que a éraiz de um polinébmio moénico f(z) € Z[z]}.

O anel Ok é um Z-modulo livre de posto n. Uma base de Ok é chamada de uma base integral
de K. O problema de encontrar a estrutura do anel Ok é equivalente ao de encontrar uma base
integral de um corpo de ntmeros, sendo um topico muito interessante e possui varios aplicagoes
na teoria de cddigos e reticulados, como pode ser visto em [4]

A valorizac@o p-adica de um inteiro n é definida por v,(n) = k, onde p* divide n e p**! néo
divide n. Dado um polinémio ménico irredutivel h(z) = 2* — ax + b, com a,b € Z, 6 uma raiz de
0
h e K = Q(f). Se tivermos, para cada primo p € Z, que vy(a) > 2 e vy(b) > 3, entdo — € Ok,
p
portanto, podemos considerar vy(a) < 2 ou v,(b) < 3. ([1] p. 21)

Teorema 1. ([1] p. 63) Seja K = Q(6) um corpo cibico, com 0 uma raiz do polinémio irredutivel
h(z) = 23 —ax + b € Z[z], vy(a) < 2 ou vy(b) < 3, com p € Z wm mimero primo. Considere 0s

inteiros Ra, S, Tz, R3, S3, T3, Ry, Sp e T, com p > 3, como nos Coroldrios 2.2.1, 2.3.1 e 2.4.1
de [1], respectivamente. Sejam R, S € Z tais que para todo nimero primo p, implica que

R=R, (modp™) e S=S, (modp™)

e sejal = H pI». Uma base integral para o corpo K é dada por

p primo

; {1 b+60 R+ S0+ 62
: ) 3 ) T
R+ S0 + 6>
T
Com base nestes fatos, neste trabalho, apresentamos um método para encontrar a base integral

de um corpo cubico, ou seja, um método para encontrar a base integral de um corpo de ntmeros
de grau 3, K = Q(«), com « raiz de um polinémio f(z) = 2® + bijz? + c1x + d; € Z[x].

}, sev3(b) =0, a=3 (mod9) eb?> =a+1 (mod27);

2. {1,9,

} , caso contrdrio.

Seja f(x) um polinémio irredutivel de grau 3 dado por f(z) = z3 + a12? + byz + ¢1 € Z[x].

Fazendo a mudanca de variavel de x para z — % no polindmio f(x) ([3] p. 75), obtemos o
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—a% + 3b1 2a‘r13 —9a1b1 + 27¢;
T

polinémio reduzido: ¢;(z) = x3 + . Tal polinémio pode ser visto

27
como g1 (z) = 3-g(z), onde g(z) = 2723 + 9(3by — a?)z + 2af — a1 by + 27c;.
Consideramos neste trabalho K = Q(), com v uma raiz de um polinémio irredutivel

g(z) = 272% + ax + b € Z[x]. (1)

Note que v ¢ Ok, ou seja, v ndo é um inteiro algébrico.

Teorema 2. ([2] p. 85) Se v € um nimero algébrico, entdo vy pode escrito da forma vy = com

E7
0 um inteiro algébrico e d € Z nao nulo.
Neste caso, d ¢ o minimo miultiplo comum dos denominadores dos coeficientes do polinémio do

qual v é raiz e 0 = dv

Teorema 3. (/2] p. 109) Se K é um corpo de nimeros, entao existe um inteiro algébrico 0 tal que
K = Q(0).
Considerando v uma raiz do polindmio (1), obtemos § = 27-v como sendo uma raiz do polinémio
irredutivel
h(z) = 2® +27 a2+ 27%b € Z[x]. (2)
Com base nos resultados anteriores, apresentamos um método para obter uma base inte-
gral para um corpo de nameros da forma K = Q(v), com v uma raiz do polinémio irredutivel
g(x)=27-23+a-x+b, com a,b € Z.
Exemplo 0.1. Sejam o polinomio irredutivel g(x) = 27z + 21+ 3 e 7y raiz de g(x). Considerando
K = Q(y), seque que v ¢ Og. Como § = 27y € Ok € uma raiz de h(z) = 3 + 54 - + 2187 e

— ; 5 0 6>
K = Q(0), seque que uma base integral é dada por {1, e 2—7}

Exemplo 0.2. Sejam o polinomio irredutivel g(z) = 2723+ 3x+1 e 7y raiz de g(x). Considerando
K = Q(y), seque que v ¢ Ox. Como 0§ = 27y € Ok € uma raiz de h(z) = 23 + 81 -z + 729 e

K =Q(0), seque que uma base integral € dada por {1, g, g}.

Desse modo, através de uma translagao da variavel obtemos uma base integral dos corpos de
ntimeros da forma K = Q(a), com « raiz de um polinémio irredutivel f(z) = 22 +a12? + b1z + ¢,
ai,b1,c1 € Z a partir da base integral do corpo Q(y), com 7 uma raiz do polindémio reduzido
g(z) = 2723 + ax + b, com a, b € Z, fazendo uso dos casos elencados por Saban Alaca [1].

Além disso, também é possivel estender para o corpo K = Q(«), com « uma raiz do polinémio
irredutivel fi(z) = az® + b’ +cx+d € Z|z], ou seja, obtemos uma base integral para os
corpos gerados por esses polindmios irredutiveis.
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