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Uma Nota Sobre Base Integral de um Corpo Cúbico
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Sejam K um corpo de números de grau n > 1 e α ∈ K. O elemento α é chamado um número
algébrico se é raiz de um polinômio não nulo com coeficientes em Q, e o elemento α é chamado
um inteiro algébrico se é raiz de um polinômio mônico com coeficientes em Z. Seja OK o anel dos
inteiros algébricos de K, ou seja, o conjunto

OK = {α ∈ K : tal que α é raiz de um polinômio mônico f(x) ∈ Z[x]}.

O anel OK é um Z-módulo livre de posto n. Uma base de OK é chamada de uma base integral
de K. O problema de encontrar a estrutura do anel OK é equivalente ao de encontrar uma base
integral de um corpo de números, sendo um tópico muito interessante e possui vários aplicações
na teoria de códigos e reticulados, como pode ser visto em [4]

A valorização p-ádica de um inteiro n é definida por vp(n) = k, onde pk divide n e pk+1 não
divide n. Dado um polinômio mônico irredutível h(x) = x3 − ax+ b, com a, b ∈ Z, θ uma raiz de

h e K = Q(θ). Se tivermos, para cada primo p ∈ Z, que vp(a) ≥ 2 e vp(b) ≥ 3, então
θ

p
∈ OK,

portanto, podemos considerar vp(a) < 2 ou vp(b) < 3. ([1] p. 21)

Teorema 1. ([1] p. 63) Seja K = Q(θ) um corpo cúbico, com θ uma raiz do polinômio irredutível
h(x) = x3 − ax + b ∈ Z[x], vp(a) < 2 ou vp(b) < 3, com p ∈ Z um número primo. Considere os
inteiros R2, S2, T2, R3, S3, T3, Rp, Sp e Tp, com p > 3, como nos Corolários 2.2.1, 2.3.1 e 2.4.1
de [1], respectivamente. Sejam R,S ∈ Z tais que para todo número primo p, implica que

R ≡ Rp (mod pTp) e S ≡ Sp (mod pTp)

e seja T =
∏

p primo

pTp . Uma base integral para o corpo K é dada por

1.
{
1,

b+ θ

3
,
R+ Sθ + θ2

T

}
, se v3(b) = 0, a ≡ 3 (mod 9) e b2 ≡ a+ 1 (mod 27);

2.
{
1, θ,

R+ Sθ + θ2

T

}
, caso contrário.

Com base nestes fatos, neste trabalho, apresentamos um método para encontrar a base integral
de um corpo cúbico, ou seja, um método para encontrar a base integral de um corpo de números
de grau 3, K = Q(α), com α raiz de um polinômio f(x) = x3 + b1x

2 + c1x+ d1 ∈ Z[x].

Seja f(x) um polinômio irredutível de grau 3 dado por f(x) = x3 + a1x
2 + b1x + c1 ∈ Z[x].

Fazendo a mudança de variável de x para x − a1
3

no polinômio f(x) ([3] p. 75), obtemos o
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polinômio reduzido: g1(x) = x3 +
−a21 + 3b1

3
x+

2a31 − 9a1b1 + 27c1
27

. Tal polinômio pode ser visto

como g1(x) =
1
27g(x), onde g(x) = 27x3 + 9(3b1 − a21)x+ 2a31 − 9a1b1 + 27c1.

Consideramos neste trabalho K = Q(γ), com γ uma raiz de um polinômio irredutível

g(x) = 27x3 + ax+ b ∈ Z[x]. (1)

Note que γ /∈ OK, ou seja, γ não é um inteiro algébrico.

Teorema 2. ([2] p. 85) Se γ é um número algébrico, então γ pode escrito da forma γ =
θ

d
, com

θ um inteiro algébrico e d ∈ Z não nulo.

Neste caso, d é o mínimo múltiplo comum dos denominadores dos coeficientes do polinômio do
qual γ é raiz e θ = dγ

Teorema 3. ([2] p. 109) Se K é um corpo de números, então existe um inteiro algébrico θ tal que
K = Q(θ).

Considerando γ uma raiz do polinômio (1), obtemos θ = 27·γ como sendo uma raiz do polinômio
irredutível

h(x) = x3 + 27 · a · x+ 272b ∈ Z[x]. (2)
Com base nos resultados anteriores, apresentamos um método para obter uma base inte-

gral para um corpo de números da forma K = Q(γ), com γ uma raiz do polinômio irredutível
g(x) = 27 · x3 + a · x+ b, com a, b ∈ Z.

Exemplo 0.1. Sejam o polinômio irredutível g(x) = 27x3+2x+3 e γ raiz de g(x). Considerando
K = Q(γ), segue que γ /∈ OK. Como θ = 27γ ∈ OK é uma raiz de h(x) = x3 + 54 · x + 2187 e
K = Q(θ), segue que uma base integral é dada por

{
1, θ

3 ,
θ2

27

}
.

Exemplo 0.2. Sejam o polinômio irredutível g(x) = 27x3+3x+1 e γ raiz de g(x). Considerando
K = Q(γ), segue que γ /∈ OK. Como θ = 27γ ∈ OK é uma raiz de h(x) = x3 + 81 · x + 729 e
K = Q(θ), segue que uma base integral é dada por

{
1, θ

9 ,
θ2

81

}
.

Desse modo, através de uma translação da variável obtemos uma base integral dos corpos de
números da forma K = Q(α), com α raiz de um polinômio irredutível f(x) = x3 + a1x

2 + b1x+ c1,
a1, b1, c1 ∈ Z a partir da base integral do corpo Q(γ), com γ uma raiz do polinômio reduzido
g(x) = 27x3 + ax+ b, com a, b ∈ Z, fazendo uso dos casos elencados por Saban Alaca [1].

Além disso, também é possível estender para o corpo K = Q(α), com α uma raiz do polinômio
irredutível f1(x) = a1x

3 + b1x
2 + c1x + d1 ∈ Z[x], ou seja, obtemos uma base integral para os

corpos gerados por esses polinômios irredutíveis.
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