

Contour Point Signature in Registration Tomography and Magnetic Resonance Images

Oscar Pedrozo¹ Christian Schaefer² Pedro Céspedes³

Polytechnic School, National University of Asunción, Paraguay.

Alejandro Giangreco⁴

School of Engineering, National University of Asunción, Paraguay.

Medical image registration plays a crucial role in several clinical applications, where the alignment of image modalities is essential for accurate diagnosis and effective treatment[1, 4]. To address this registration challenge, we explore an innovative feature-based approach using the Contour Point Signature (CPS) proposed in [2]. Given a contour A , whose reference points are $\mathcal{P} = \{p_1, p_2, \dots, p_N\}, p_i \in \mathbb{R}^2$, the Contour Point Signature relative to point p_i :

$$f_{p_i}(j) := \frac{1}{\|A\|} |p_i - p_{r(j)}|, \quad \begin{cases} r(j) &= i, i+1, \dots, N, 1, 2, \dots, i \\ j &= 1, 2, \dots, N+1. \end{cases} \quad (1)$$

This function represents the relative distance distribution of contour points, which is a unique signature for each shape. Taking the signatures of all points in \mathcal{P} using equation (1), we obtain a matrix whose ij -entry is given by $f_{p_i}(j)$ (descriptor feature matrix of the shape). The Matrix stores the signatures of contour points, providing a structured representation of the shape based on its contour, capturing the object's form.

To register two images (“fixed” and “moving”), we use a cost matrix H that quantifies contour similarity and determines the optimal “rotation” for alignment. It is computed using the CPS of both contours and the Euclidean distance d in \mathbb{R}^N . It is defined by:

$$H(j) = \sum_{i=1}^N d(f_i, g_{\pi(i,j)}), \quad j = 1, 2, \dots, N, \quad (2)$$

where the rotation function is given by $\pi(i,j) = (i+j-2) \bmod (N) + 1$. The optimal rotation index value of \hat{j} is obtained by $H(\hat{j}) = \min_{j=1, \dots, N} \{H(j)\}$.

CPS does not require processing the entire image, which is suitable for large-scale medical imaging applications. It is invariant to translation, rotation, and scale, and robust to noise [2]. Despite these advantages, the overall registration process remains sensitive to noise due to its dependence on preprocessing for contour extraction. We employ a marching squares method to extract iso-valued contours based on a given intensity threshold. Hence, the quality of the extracted points is crucial for reliable registration. Nevertheless, despite this sensitivity, the obtained contour points can still be used to simulate landmark-based registration, enabling the evaluation of CPS in different scenarios.

Figure 1 illustrates the CPS-based registration process. (a) Fixed image (512×512 pixels), with extracted CPS points as reference landmarks. (b) Moving image (256×256 pixels) before transformation, with CPS points misaligned due to positional and scale differences. (c) Aligned

¹oscarleonardopedrozo@gmail.com

²cschaer@pol.una.py

³pcespede@pol.una.py

⁴agiangreco@ing.una.py

CPS points after transformation. Moving points have been adjusted to align CPS points with those of the fixed image. This means a successful registration.

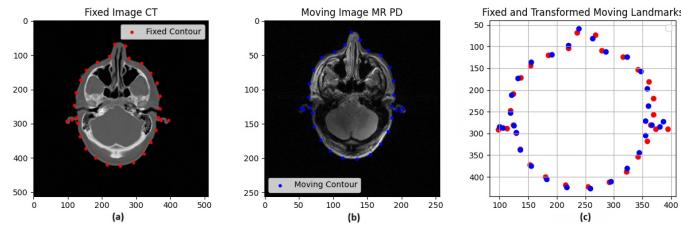


Figure 1: Medical image registration using CPS. (a) Fixed image with extracted CPS points. (b) Moving image before transformation. (c) CPS points aligned after transformation. Source: Own work.

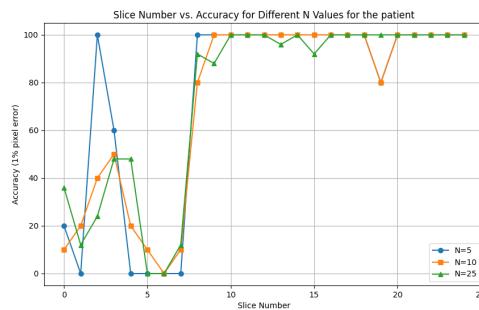


Figure 2: Accuracy results. Image dimensions 512×512 pixels, error threshold of 1% (approx. 5.12 pixels). Source: Own work.

The accuracy is evaluated using the Euclidean distance between corresponding fixed and moving points in the patient's slices after transformation (Figure 2) [3]. Figure 2 shows an accuracy 72.80% for $N = 10$. Findings indicate that CPS is an appropriate registration method, and accuracy relies on the quality of contour extraction. A more appropriate preprocessing step could improve landmark correspondence and overall registration accuracy.

References

- [1] L. G. Brown. "A Survey of Image Registration Techniques". In: **ACM Computing Surveys (CSUR)** 24.4 (1992), pp. 325–376. DOI: 10.1145/146370.146374.
- [2] A. J. Giangreco Maidana, H. A. Legal Ayala, C. E. Schaefer, and W. Villamayor Venialbo. "Contour-Point Signature Shape Descriptor For Point Correspondence". In: **International Journal of Image and Graphics** 18.2 (2018), pp. 3–13. DOI: 10.1142/S0219467818500079.
- [3] A. A. Goshtasby. "Performance Evaluation". In: **2-D and 3-D Image Registration**. John Wiley & Sons, Ltd, 2005. Chap. 7, pp. 155–165. ISBN: 9780471724278. DOI: 10.1002/0471724270.ch7.
- [4] S. Polinati, D. P. Bavirisetti, K. N. V. P. S. Rajesh, G. R. Naik, and R. Dhuli. "The Fusion of MRI and CT Medical Images Using Variational Mode Decomposition". In: **Applied Sciences** 11.22 (2021).