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Convexidades em grafos são inspiradas no conceito de mesmo nome em geometria mas adap-
tadas para esse contexto. Diferentes definições do que constitui um conjunto convexo já foram
estudadas, entre as mais conhecidas estão aquelas definidas sobre caminhos, como as convexidades
P3 [3] e geodética [4]. Além do interesse teórico, processos como a propagação de informações ou
epidemias podem ser modelados por conceitos de convexidade em grafos – estruturas que capturam
regras de influência em redes sociais complexas. Nesses contextos, as regras de propagação estão
diretamente relacionadas com uma definição de uma convexidade em grafos e o objeto de estudo
se torna a função de intervalo da convexidade, que é o conceito análogo à combinação convexa, da
geometria.

Neste trabalho, abordamos a convexidade cíclica, inicialmente motivada por aplicações em
teoria dos nós [2]. Formalmente, dado um grafo G e um subconjunto S ⊆ V (G), a função de
intervalo infecta v ̸∈ S se existe um ciclo em G[S ∪ {v}]. Alguns aspectos dessa convexidade já
foram estudados, com resultados recentes sobre seus números de intervalo [1] e de convexidade [6].
Nosso objetivo é responder uma terceira questão de interesse na área de convexidade em grafos
para a convexidade cíclica, que chamamos de Partição em Conjuntos Convexos Cíclicos
(PCCC): dado um grafo G e um inteiro k, é possível particionar G em exatamente k conjuntos
convexos? Este problema já foi considerado em diversas outras convexidades. Uma breve revisão
da literatura, bem como resultados recentes podem ser encontrados em [5].

O principal resultado deste trabalho é o teorema a seguir.

Teorema 1. O problema PCCC é NP-completo mesmo se k = 2.

A demonstração é baseada em uma redução do problema 2-in-3-SAT, uma variação conhecida
do problema 3-SAT. Nela, exatamente dois literais devem ser verdadeiros em cada cláusula para a
instância ser satisfeita. Na redução feita, foram utilizados dois gadgets principais, que podem ser
visualizados nas Figuras 1, ??, e ??. Intuitivamente, queremos que cada cópia esteja sempre parti-
cionada em dois conjuntos; para os gadgets de literais, isso se traduz em uma atribuição que torna
o literal correspondente verdadeiro ou falso; para isso adicionamos arestas entre gadgets oriundos
de literais de uma mesma variável para forçar que as partições sejam globalmente coerentes.

O ponto chave da prova é a introdução de um ciclo ci,1, xi,1, xi,2, ci,2, yi,1, yi,2, ci,3, zi,1, zi,2
para cada cláusula i que contém as variáveis x, y, z. Intuitivamente, se dois dos literais não são
verdadeiros, isso deve forçar que o conjunto {ci,1, ci,2, ci,3} seja subconjunto de um dois conjuntos
convexos e que o gadget da cláusula Ci também está no mesmo conjunto. Com a adição das
arestas adequadas, isso implicaria que o grafo não foi particionado. Com o Teorema 1, podemos
generalizar nosso resultado para todo k ≥ 2. Formalizamos esse resultado no Teorema 2.

Teorema 2. Para qualquer k ≥ 2 fixo, o problema PCCC é NP-completo.
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Figura 1: a) Gadget que representa um literal. b) Gadget que representa uma cláusula. c) Gadget que
força pelo menos um literal ser avaliado como falso. Fonte: autoria própria.

A prova do Teorema 2 é feita por indução, tendo como caso base k = 2. Para o passo indutivo,
a partir de uma instância H, construímos uma instância H ′ da seguinte maneira. Seja V (H) =
{v1, v2, ..., vn} temos que V (H ′) = V (H) ∪ {u1, u2, ..., un} e E(H ′) = E(H) ∪ {viui|i ∈ [n]}. A
partir dessa construção, é possível provar que H ′ possui uma partição em k conjuntos convexos se,
e somente se H possui uma partição em k − 1 conjuntos convexos.

Além desses resultados de NP-completude, encontram-se em desenvolvimento algoritmos poli-
nomiais para casos particulares onde o grafo de entrada pertence a determinadas classes de grafos,
como grafos cordais e disco unitários.

Agradecimentos
Este trabalho conta com o apoio da FAPEMIG.

Referências
[1] J. Araujo, G. Ducoffe, N. Nisse e K. Suchan. “On interval number in cycle convexity”. Em:

Discrete Mathematics and Theoretical Computer Science 20.1 (2018), p. 13. doi:
https://doi.org/10.23638/DMTCS-21-1-13.

[2] J. Araújo, V. Campos, D. Girão, J. Nogueira, A. Salgueiro e A. Silva. “Cycle convexity and
the tunnel number of links”. Em: preprint arXiv:2012.05656 (2020).

[3] C. C. Centeno, M. C. Dourado e J. L. Szwarcfiter. “On the Convexity of Paths of Length Two
in Undirected Graphs”. Em: Electronic Notes in Discrete Mathematics 32 (2009), p. 11.
doi: https://doi.org/10.1016/j.endm.2009.02.003.

[4] M. G. Everett e S. B. Seidman. “The Hull Number of a Graph”. Em: Discrete Mathematics
57.3 (1985), pp. 217–223. doi: 10.1016/0012-365X(85)90147-5.

[5] L. M. González, L. N. Grippo, M. D. Safe e V. F. dos Santos. “Covering graphs with convex
sets and partitioning graphs into convex sets”. Em: Information Processing Letters 158
(2020), p. 105944. doi: https://doi.org/10.48550/arXiv.1907.01581.

[6] C. V. G. C. Lima, T. Marcilon e P. P. de Medeiros. “The complexity of convexity number and
percolation time in the cycle convexity”. Em: preprint arXiv:2404.09236 (2024).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

010060-2 © 2026 SBMAC


