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Os reticulados desempenham um papel fundamental em diversas áreas da matemática, in-
cluindo teoria dos números algébricos, teoria dos corpos e teoria dos corpos finitos. Em particular,
reticulados provenientes de corpos de números totalmente reais reais são candidatos promissores
para a construção de reticulados com boas propriedades, como empacotamento esférico e distância
produto mínima [1, 2]. Neste trabalho, nos baseamos nas referências [3, 4] e exploramos o conceito
de torções bem-arredondadas em reticulados oriundos de corpos quadráticos reais, com foco na
construção explícita dessas torções.

Para isso, consideramos Λ um reticulado de posto completo em Rn. O conjunto dos vetores
mínimos de Λ é definido por

S(Λ) = {x ∈ Λ : ∥x∥2 = |Λ|}, (1)

onde |Λ| = min{∥x∥2 : x ∈ Λ, x ̸= 0} e ∥ ∥ é a norma euclidiana usual em Rn. Um reticulado Λ é
bem-arredondado se S(Λ) gera Rn como espaço vetorial sobre R.

Seja I um ideal no anel dos inteiros OK de um corpo quadrático real K = Q(
√
D). A ideia

central consiste em aplicar uma torção por meio de uma matriz diagonal, de modo que o reticulado
torcido associado ao ideal I torne-se bem-arredondado.

Primeiramente, introduzimos a noção de uma base B de um reticulado Λ ⊂ R2 ser boa para
torção.

Considere o grupo diagonal

A2 =

{
Tα =

[
α 0
0 1/α

]
: α > 0

}
(2)

e seja Λ ∈ L2 := SL2(R)/SL2(Z) um reticulado.
Uma base B de Λ será dita boa para torção (ou simplesmente uma boa base) se existir uma

matriz de torção Tα ∈ A2 tal que o reticulado torcido TαΛ seja bem-arredondado e possua TαB
como uma base constituída de vetores mínimos.

Diante disso, mostramos que B é boa para torção se, e somente se,

F (B) = F (x, y) = N(x)2 +N(x)N(y) +N(y)2 − N(I)2∆K

4
≤ 0, (3)

onde N(·) representa a norma, N(I) a norma do ideal e ∆K o discriminante do corpo K. Além
disso, para u ∈ K, escrevemos ū para indicar a conjugação Q-linear de K = Q(

√
D), isto é, a

involução que envia
√
D em −

√
D. Nesse caso, quando F (B) ≤ 0, o parâmetro de torção é dado

por α = ((ȳ2 − x̄2)(x2 − y2))1/4.
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Ademais, mostramos que o reticulado ortogonal é uma torção de ΛI se, e somente se, o ideal I
admitir uma base B = {x, y} satisfazendo N(x) +N(y) = 0, bem como o reticulado hexagonal é
uma torção de ΛI se, e somente se, I admitir uma base B = {x, y} tal que F (x, y) = 0.

Este estudo contribui para a compreensão das torções bem-arredondadas de reticulados ΛI
obtidos através de corpos quadráticos reais, oferecendo uma abordagem explícita para o seu cálculo.
A formalização dos critérios de “boa torção” possibilita avanços relevantes na compreensão das
propriedades geométricas dos reticulados oriundos de corpos quadráticos reais [3]. As implicações
desses resultados são significativas para aplicações em comunicação sem fio [5], onde reticulados
com boas propriedades são essenciais para garantir a segurança e a eficiência dos sistemas de
comunicação.
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