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Os reticulados desempenham um papel fundamental em diversas &reas da matemaética, in-
cluindo teoria dos ntumeros algébricos, teoria dos corpos e teoria dos corpos finitos. Em particular,
reticulados provenientes de corpos de ntimeros totalmente reais reais sao candidatos promissores
para a construgao de reticulados com boas propriedades, como empacotamento esférico e distancia
produto minima [1, 2]. Neste trabalho, nos baseamos nas referéncias [3, 4] e exploramos o conceito
de torgoes bem-arredondadas em reticulados oriundos de corpos quadraticos reais, com foco na
construgao explicita dessas torgoes.

Para isso, consideramos A um reticulado de posto completo em R™. O conjunto dos vetores
minimos de A é definido por

S(A) = {z € A: [laf* = |A]}, (1)

onde |A| = min{||lz||> : 2 € A, @ #0} e || || ¢ a norma euclidiana usual em R™. Um reticulado A ¢
bem-arredondado se S(A) gera R™ como espago vetorial sobre R.

Seja T um ideal no anel dos inteiros O de um corpo quadratico real K = Q(v/D). A ideia
central consiste em aplicar uma tor¢ao por meio de uma matriz diagonal, de modo que o reticulado
torcido associado ao ideal Z torne-se bem-arredondado.

Primeiramente, introduzimos a nocdo de uma base B de um reticulado A C R? ser boa para
torgao.

Considere o grupo diagonal

Ay = {Ta - [g lm fa > 0} (2)

e seja A € Lo := SL2(R)/SL2(Z) um reticulado.

Uma base B de A sera dita boa para tor¢do (ou simplesmente uma boa base) se existir uma
matriz de tor¢ao Ty, € As tal que o reticulado torcido T, A seja bem-arredondado e possua T, B
como uma base constituida de vetores minimos.

Diante disso, mostramos que B é boa para torgao se, e somente se,

F(B) = F(a.y) = N@)* + NN () + N - V8% < ®

onde N(-) representa a norma, N(Z) a norma do ideal e Ag o discriminante do corpo K. Além
disso, para u € K, escrevemos @ para indicar a conjugacao Q-linear de K = Q(\/E)7 isto é, a
involucéo que envia vD em —v/D. Nesse caso, quando F (B) < 0, o parametro de tor¢ao é dado
por a = ((7* — 2%)(z* — y*))"/*.
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Ademais, mostramos que o reticulado ortogonal é uma tor¢ao de Az se, e somente se, o ideal 7
admitir uma base B = {z,y} satisfazendo N(z) + N(y) = 0, bem como o reticulado hexagonal é
uma tor¢ao de Az se, e somente se, Z admitir uma base B = {x,y} tal que F(z,y) = 0.

Este estudo contribui para a compreensao das tor¢oes bem-arredondadas de reticulados Az
obtidos através de corpos quadréaticos reais, oferecendo uma abordagem explicita para o seu calculo.
A formalizacdo dos critérios de “boa tor¢ao” possibilita avangos relevantes na compreensao das
propriedades geométricas dos reticulados oriundos de corpos quadraticos reais [3]. As implicagoes
desses resultados sdo significativas para aplicagdes em comunicagdo sem fio [5], onde reticulados
com boas propriedades sao essenciais para garantir a seguranca e a eficiéncia dos sistemas de
comunicacgao.
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