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This work investigates linearization techniques for the Navier-Stokes equations (NSE) using
the Taylor-Green Vortex (TGV) benchmark, with applications to Quantum Computing (QC).
Pre-processing NSE for QC will open avenues for faster fluid simulations in the future [4].

Quantum algorithms require linear formulations, as quantum operations follow the superposi-
tion principle through unitary transformations [2]. This fundament is shown in Dirac notation:

U (a|ψ1⟩+ b|ψ2⟩) = aU |ψ1⟩+ bU |ψ2⟩, (1)

where U is a unitary operator (U†U = I), |ψi⟩ represent quantum state vectors, and a, b ∈ C
are complex probability amplitudes. The nonlinear convective term (u · ∇)u in NSE violates
this linearity requirement, necessitating specialized approximation techniques. The TGV problem
provides an ideal test case for its exact analytical solution and periodic boundary conditions [1, 7].

The TGV test case is governed by the incompressible NSE [7]:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u, ∇ · u = 0, (2)

where u is the velocity field, p is the pressure, ν is the kinematic viscosity, and t is time.
The analytical solution for TGV is [7]:

uanalytical =

A cos(ax) sin(by) sin(cz)e−ν(a2+b2+c2)t

B sin(ax) cos(by) sin(cz)e−ν(a2+b2+c2)t

C sin(ax) sin(by) cos(cz)e−ν(a2+b2+c2)t

 , (3)

where A, B, C, a, b, and c are constants, and x, y, and z are Cartesian coordinates.
The studied methods are:
1. Local Temporal Linearization: Approximates the nonlinear term using a Taylor series

expansion around equilibrium u0 [6]:

(u · ∇)u ≈ (u0 · ∇)u0 + α [(u0 · ∇)δu+ (δu · ∇)u0] , (4)

where δu = u− u0 is a small perturbation, and α is a coefficient that calibrates the velocity field
at each time step.

2. SVD Matricial Tensorial Linearization: Uses Singular Value Decomposition (SVD) to
approximate velocity fields in low-rank format, reducing complexity while preserving flow features.
The 3D fields are reshaped into 2D matrices, decomposed via SVD, and rebuilt using dominant
singular components:

uapprox = U:,1:r · S1:r,1:r ·VT
1:r,:, (5)
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where U, S, and V are singular vectors and values, and r is the rank. The linearized fields are
updated as:

ulinearized = uapprox − αuapprox∆t, (6)

where α is a linearization coefficient and ∆t is the time step. This approach aligns with low-rank
solvers for Navier-Stokes equations [3].

3. Logarithmic Linearization: This method linearizes nonlinear velocity terms by applying
a logarithmic transformation to |u|, ensuring positivity with a small constant ϵ = 10−10.
Linearization is performed in log-space and mapped back via the exponential function, preserving
velocity direction [5]:

ulog = log(|u|+ ϵ), ulinearized = exp (ulog − αulog∆t) ·
u

|u|
, (7)

where α is a linearization coefficient and ∆t the time step.
Numerical experiments used a 643 grid, 2π domain, ν = 0.01 m2/s, ∆t = 0.001 s, third-order

Runge-Kutta time integration [1], and finite-differences for spatial derivatives.
The methods yielded comparable accuracy to standard NSE:

- Navier-Stokes: MSE = 0.049062, Absolute Error = 0.161511
- Local Temporal: MSE = 0.049062, Absolute Error = 0.161511
- SVD: MSE = 0.049001, Absolute Error = 0.161220
- Logarithmic: MSE = 0.049049, Absolute Error = 0.161493
The SVD method showed superior performance, demonstrating potential for quantum comput-

ing applications where linear formulations are essential.
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