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This work investigates linearization techniques for the Navier-Stokes equations (NSE) using
the Taylor-Green Vortex (TGV) benchmark, with applications to Quantum Computing (QC).
Pre-processing NSE for QC will open avenues for faster fluid simulations in the future [4].

Quantum algorithms require linear formulations, as quantum operations follow the superposi-
tion principle through unitary transformations [2]. This fundament is shown in Dirac notation:

U (althr) + bliha)) = aUlhr) + bU |4ha), (1)

where U is a unitary operator (UTU = I), |[¢;) represent quantum state vectors, and a,b € C

are complex probability amplitudes. The nonlinear convective term (u - V)u in NSE violates

this linearity requirement, necessitating specialized approximation techniques. The TGV problem

provides an ideal test case for its exact analytical solution and periodic boundary conditions [1, 7].
The TGV test case is governed by the incompressible NSE [7]:
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where u is the velocity field, p is the pressure, v is the kinematic viscosity, and ¢ is time.
The analytical solution for TGV is [7]:

+(u-Viu=-Vp+vViu, V-u=0, (2)

A cos(ax) sin(by) Sin(cz)eﬂf(a‘z +b%+c?)t

Uanalytical = | Bsin(ax) cos(by) sin(cz)e @+ +et | (3)
C'sin(az) sin(by) cos(cz)e ¥ +b*+e*)t
where A, B, C, a, b, and c¢ are constants, and x, y, and z are Cartesian coordinates.
The studied methods are:
1. Local Temporal Linearization: Approximates the nonlinear term using a Taylor series
expansion around equilibrium ug [6]:

(u-V)u= (ug-V)ug + af(ug- V)du+ (du- Vug], (4)

where du = u — ug is a small perturbation, and « is a coefficient that calibrates the velocity field
at each time step.

2. SVD Matricial Tensorial Linearization: Uses Singular Value Decomposition (SVD) to
approximate velocity fields in low-rank format, reducing complexity while preserving flow features.
The 3D fields are reshaped into 2D matrices, decomposed via SVD, and rebuilt using dominant
singular components:

Uapprox — U:,l:r . Sl:r,l:r : V,{;r’n (5)
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where U, S, and V are singular vectors and values, and r is the rank. The linearized fields are
updated as:
Ulinearized — Wapprox — auapproxAtv (6)

where « is a linearization coefficient and At is the time step. This approach aligns with low-rank
solvers for Navier-Stokes equations [3].

3. Logarithmic Linearization: This method linearizes nonlinear velocity terms by applying
a logarithmic transformation to |u|, ensuring positivity with a small constant € = 10710,
Linearization is performed in log-space and mapped back via the exponential function, preserving
velocity direction [5]:

Ulog = 10g(|u| + 6), Ulinearized = €XP (ulog - aulogAt) : ﬁa (7)

where « is a linearization coefficient and At the time step.

Numerical experiments used a 643 grid, 2r domain, v = 0.01 m?/s, At = 0.001 s, third-order
Runge-Kutta time integration [1], and finite-differences for spatial derivatives.
The methods yielded comparable accuracy to standard NSE:

- Navier-Stokes: MSE = 0.049062, Absolute Error = 0.161511

- Local Temporal: MSE = 0.049062, Absolute Error = 0.161511

- SVD: MSE = 0.049001, Absolute Error = 0.161220

- Logarithmic: MSE = 0.049049, Absolute Error = 0.161493

The SVD method showed superior performance, demonstrating potential for quantum comput-
ing applications where linear formulations are essential.
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