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O entendimento do campo de velocidade submarino e da pressão abaixo de uma onda aquática
é um tema de grande interesse tanto do ponto de vista das aplicações quanto do ponto de vista
matemático. Do ponto de vista aplicado, ele tem um papel fundamental em áreas como oceanografia
e biologia submarina. Do ponto de vista matemático, este problema é modelado por equações
diferenciais parciais não lineares de fronteira livre e móvel, o que torna o estudo de suas propriedades
um desafio.

Fisicamente, quando as ondas aquáticas são longas em comparação com a profundidade, elas
podem ser modeladas por escoamentos com vorticidade constante e não nula. Com relação à
pressão, em escoamentos irrotacionais (com vorticidade nula), sabe-se que o mínimo ocorre na
superfície da onda, enquanto o máximo se encontra abaixo da crista, no fundo do canal. Além disso,
a pressão é estritamente crescente com a profundidade ao longo de linhas verticais e estritamente
decrescente ao longo de linhas horizontais que começam abaixo da crista e terminam no cavado [1].
No entanto, quando consideramos vorticidade constante não nula, essas afirmações, em geral, não
se aplicam. Nesses casos, em que a pressão se comporta de maneira diferente da intuição física,
dizemos que há uma anomalia de pressão.

A maioria dos trabalhos na literatura sobre ondas aquáticas em escoamentos com vorticidade
constante limita-se ao estudo de ondas que se propagam sobre um fundo plano, o que leva à questão
dos efeitos causados na pressão na presença de topografia variável. Nesse contexto, o objetivo
geral deste trabalho é investigar, de forma numérica, a pressão abaixo de ondas estacionárias com
vorticidade constante, considerando um fundo oceânico modelado por uma topografia variável no
espaço.

Denotando por ζ(x, t) a superfície livre, h(x) a topografia no fundo do canal, P (x) a pressão
na superfície livre, ϕ(x, y, t) o potencial de velocidade e ψ(x, y, t) a sua conjugada harmônica, as
equações governantes que descrevem a dinâmica das ondas aquáticas, nas variáveis adimensionais,
são expressas por [2]:

∆ϕ = 0, em − 1 + h(x) < y < ζ(x, t)

(F − Ω)hx +Ωhhx + ϕxhx = ϕy, sobre y = −1 + h(x)

ζt + (F +Ωζ + ϕx)ζx − ϕy = 0, sobre y = ζ(x, t)

ϕt +
1

2

(
ϕ2x + ϕ2y

)
+ (F +Ωζ)ϕx + ζ − Ωψ = −P (x), sobre y = ζ(x, t)

(1)
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onde Ω corresponde a vorticidade adimensional e F ao número de Froude. A pressão adimensional
no domínio do fluido p(x, y) é dada por:

p = −
(
1

2
(ψ2

x + ψ2
y) + (F +Ωy)ψy + y − Ωψ

)
. (2)

A metodologia numérica empregada consiste em duas etapas: (i) desenvolvimento de um ma-
peamento conforme para reformular as equações de Euler em uma única equação diferencial, cujas
derivadas são aproximadas via FFT, resultando em um sistema não linear resolvido pelo método
de Newton; (ii) cálculo da pressão a partir das fórmulas do mapeamento conforme, após a deter-
minação da superfície livre.

Nos ensaios numéricos, fixamos F = 1.5, consideramos a pressão na superfície livre como
a atmosférica (P (x) = 0) e modelamos o fundo oceânico pela curva h(x) = Ae−x2

, com A =
0.1 (lombada) e A = −0.1 (buraco). Para ambos os casos, calculamos os contornos de pressão
no fluido, a pressão no fundo do canal e abaixo da crista da onda para diferentes valores de
vorticidade Ω. Observamos que à medida que a vorticidade aumenta, em módulo, o mínimo global
da pressão desloca-se da superfície livre para o fundo do oceano. A Figura (1) ilustra exemplos
dessas anomalias de pressão.
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Figura 1: Surgimento de anomalias de pressão. Os pontos em vermelho indicam a localização do
máximo global da pressão, enquanto os pontos em azul indicam a localização do mínimo global. A linha
azul nos contornos de pressão de Ω = −12 e Ω = 17 indica os pontos nos quais a pressão é igual a pressão

na superfície livre. Fonte: Dos Autores.

Neste estudo, consideramos h(x) = Ae−x2

e P (x) = 0. Uma continuidade natural deste trabalho
é analisar o caso h(x) = 0 e P (x) = Ae−x2

. Por fim, o autor Martins agradece à CAPES pelo
financiamento deste estudo.
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