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The estimation of the medium absorption coefficient from external measurements can be stated
as an inverse problem [5, 6], and has important applications in optical medicine [8], including in
optical tomography [2]. In this work, we propose a framework based on artificial neural networks
(ANNs) to estimate the absorption coefficient in multi-region heterogeneous media. The associated
direct transport problem [4] is given as

− 1 < µ < 1, µ ̸= 0 :
1

c
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∂t
+ µ
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+ σtI(t, µ, x) = σsΨ(t, x), (t, x) ∈ (0, tf ]× (a, b), (1a)

− 1 < µ < 1 : I(0, µ, x) = 0, x ∈ [a, b], (1b)
µ > 0 : I(t, µ, x) = q(t, µ), t ∈ [0, tf ], (1c)
µ < 0 : I(t, µ, x) = 0, t ∈ [0, tf ], (1d)

where I(t, µ, x) [W/sr] is the particle intensity at the time t [ps], in the direction µ [sr], and at the
point x [cm], c [cm/ps] is the average speed of light in the medium, σt(x) = κ(x)+σs(x) [1/cm] is
the total absorption coefficient, κ(x) [1/cm] is the absorption coefficient, and σs(x) [1/cm] is the
scattering coefficient. The average scalar flux is denoted by Ψ(t, x) = 1

2
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I(t, µ′, x) dµ′. Based

on the model given in [1], the only source is a laser pulse given by

q(t, µ) = w
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δµ

)
w
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δt

)
, (2)

where µs is the laser direction, δµ its angular spread, τs its activation time, δt its temporally center,
and w(ν) is the window function

w(ν) =


1 , ν = 0,
exp

((
2e−1/|ν|) /(|ν| − 1)

)
, 0 < ν < 1,

0 , |ν| ≥ 1.
(3)

The objective is to estimate the absorption coefficient κ(x) from detector measurements d0(t) =
Ψ(t, a) and d1(t) = Ψ(t, b), t ∈ [0, tf ]. We propose to estimate κ as a piece-wise constant function.
The medium is partitioned into nc cells, which determines the resolution of the estimations. A
multi-layer perceptron (MLP) neural network [3] is built to give the κκκ = (κi)

nc
i=1 estimations from

discrete detectors measurements ddd = {(d0(tj), d1(tj))}nd

j=1, where nd is the number of measurements
in discrete times. The ANN is trained from a data set

{(
ddd(s),κκκ(s)

)}nk

s=1
computed from solutions
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of the direct problem (1). The direct solver is based on the Method of Characteristics (MoC), and
it has already been detailed in our previous work [7]. Therefore, the framework couples an efficient
direct solver with a general-purpose non-linear regression model.

As a work in progress, we present here a preliminary test case. The medium is assumed to
have the total absorption coefficient σt = 1, a = 0, b = 1, and the parameters of the laser pulse
are µs = 1.0, δµ = 1, τs = 0.0, δt = 120. The direct solver has been used to produce a training
set

{(
ddd(s),κκκ(s)(x)

)}nk

s=1
with ddd(s) = {(d0(tj), d1(tj))}nd

j=1, tj = 10j, nd = 6 and each output vector
κκκ(s)(x) contains nc = 10 piecewise constant absorption coefficients distributed over the domain,
defined as

κκκ(s)(x) =
(
κ
(s)
1 , κ

(s)
2 , . . . , κ

(s)
i

)
, (4)

with κ
(s)
i = 0.1 + (s− 1)0.1, s = 1, 2, . . . , nc = 10.

Further work will include the training of the ANN and the evaluation of the estimations for
different resolution setups. The framework is expected to be a powerful alternative for estimating
the absorption coefficient in multi-region heterogeneous media.
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