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The estimation of the medium absorption coefficient from external measurements can be stated
as an inverse problem [5, 6], and has important applications in optical medicine [§], including in
optical tomography [2]. In this work, we propose a framework based on artificial neural networks
(ANNS) to estimate the absorption coefficient in multi-region heterogeneous media. The associated
direct transport problem [4] is given as
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where I(t, p, ) [W/sr] is the particle intensity at the time ¢ [ps], in the direction u [sr], and at the

point x [em], ¢ [em/ps] is the average speed of light in the medium, o¢(z) = k(z) + o5(x) [1/em] is
the total absorption coefficient, x(x) [1/cm] is the absorption coefficient, and o4(z) [1/cm)] is the

scattering coefficient. The average scalar flux is denoted by ¥ (¢,z) = %f_ll I(t,p,z)dy’. Based
on the model given in [1], the only source is a laser pulse given by
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where pi, is the laser direction, d,, its angular spread, 7, its activation time, J; its temporally center,
and w(v) is the window function

1 v =0,
w(v) =14 exp((2e VM) /(jv|-1)) ,0<v<1, (3)
0 vl > 1.

The objective is to estimate the absorption coefficient x(z) from detector measurements do(t) =
U(t,a) and di(t) = ¥(t,b), t € [0,tf]. We propose to estimate £ as a piece-wise constant function.
The medium is partitioned into n. cells, which determines the resolution of the estimations. A
multi-layer perceptron (MLP) neural network [3] is built to give the k = (k;);¢, estimations from

discrete detectors measurements d = {(do(t;), d1 (tj))}?il, where ng4 is the number of measurements

in discrete times. The ANN is trained from a data set {(d(s), n(s)) }:tl computed from solutions
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of the direct problem (1). The direct solver is based on the Method of Characteristics (MoC), and
it has already been detailed in our previous work [7]. Therefore, the framework couples an efficient
direct solver with a general-purpose non-linear regression model.

As a work in progress, we present here a preliminary test case. The medium is assumed to
have the total absorption coefficient oy = 1, a = 0, b = 1, and the parameters of the laser pulse
are g = 1.0, 6, = 1, 7, = 0.0, §; = 120. The direct solver has been used to produce a training
set {(d®), k() (x))}:; with d©®) = {(do(t;),d: (tj))}?il, t; = 107, ng = 6 and each output vector
n(s)(ar) contains n, = 10 piecewise constant absorption coefficients distributed over the domain,
defined as

k) (z) = (Hgs), nés), ce mgs)) , (4)
with £ = 0.1+ (s — 1)0.1, s = 1,2,...,n = 10.

Further work will include the training of the ANN and the evaluation of the estimations for

different resolution setups. The framework is expected to be a powerful alternative for estimating

the absorption coefficient in multi-region heterogeneous media.
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