

ANN Estimations of the Absorption Coefficient in Multi-Region Heterogenous Media: MoC Solutions as Training Data

Nelson G. Roman¹ Pedro H. A. Konzen²
PPGMAp/IME/UFRGS, Porto Alegre, RS

The estimation of the medium absorption coefficient from external measurements can be stated as an inverse problem [5, 6], and has important applications in optical medicine [8], including in optical tomography [2]. In this work, we propose a framework based on artificial neural networks (ANNs) to estimate the absorption coefficient in multi-region heterogeneous media. The associated direct transport problem [4] is given as

$$-1 < \mu < 1, \mu \neq 0 : \frac{1}{c} \frac{\partial I}{\partial t} + \mu \frac{\partial I}{\partial x} + \sigma_t I(t, \mu, x) = \sigma_s \Psi(t, x), \quad (1a)$$

$$-1 < \mu < 1 : I(0, \mu, x) = 0, x \in [a, b], \quad (1b)$$

$$\mu > 0 : I(t, \mu, x) = q(t, \mu), t \in [0, t_f], \quad (1c)$$

$$\mu < 0 : I(t, \mu, x) = 0, t \in [0, t_f], \quad (1d)$$

where $I(t, \mu, x)$ [W/sr] is the particle intensity at the time t [ps], in the direction μ [sr], and at the point x [cm], c [cm/ps] is the average speed of light in the medium, $\sigma_t(x) = \kappa(x) + \sigma_s(x)$ [$1/cm$] is the total absorption coefficient, $\kappa(x)$ [$1/cm$] is the absorption coefficient, and $\sigma_s(x)$ [$1/cm$] is the scattering coefficient. The average scalar flux is denoted by $\Psi(t, x) = \frac{1}{2} \int_{-1}^1 I(t, \mu', x) d\mu'$. Based on the model given in [1], the only source is a laser pulse given by

$$q(t, \mu) = w\left(\frac{|\mu - \mu_s|}{\delta_\mu}\right) w\left(\frac{|t - \tau_s - \delta_t|}{\delta_t}\right), \quad (2)$$

where μ_s is the laser direction, δ_μ its angular spread, τ_s its activation time, δ_t its temporally center, and $w(\nu)$ is the window function

$$w(\nu) = \begin{cases} 1 & , \nu = 0, \\ \exp\left(\left(2e^{-1/|\nu|}\right) / (|\nu| - 1)\right) & , 0 < \nu < 1, \\ 0 & , |\nu| \geq 1. \end{cases} \quad (3)$$

The objective is to estimate the absorption coefficient $\kappa(x)$ from detector measurements $d_0(t) = \Psi(t, a)$ and $d_1(t) = \Psi(t, b)$, $t \in [0, t_f]$. We propose to estimate κ as a piece-wise constant function. The medium is partitioned into n_c cells, which determines the resolution of the estimations. A multi-layer perceptron (MLP) neural network [3] is built to give the $\kappa = (\kappa_i)_{i=1}^{n_c}$ estimations from discrete detectors measurements $\mathbf{d} = \{(d_0(t_j), d_1(t_j))\}_{j=1}^{n_d}$, where n_d is the number of measurements in discrete times. The ANN is trained from a data set $\{(\mathbf{d}^{(s)}, \kappa^{(s)})\}_{s=1}^{n_k}$ computed from solutions

¹ngroman1992@gmail.com

²pedro.konzen@ufrgs.br

of the direct problem (1). The direct solver is based on the Method of Characteristics (MoC), and it has already been detailed in our previous work [7]. Therefore, the framework couples an efficient direct solver with a general-purpose non-linear regression model.

As a work in progress, we present here a preliminary test case. The medium is assumed to have the total absorption coefficient $\sigma_t = 1$, $a = 0$, $b = 1$, and the parameters of the laser pulse are $\mu_s = 1.0$, $\delta_\mu = 1$, $\tau_s = 0.0$, $\delta_t = 120$. The direct solver has been used to produce a training set $\{(\mathbf{d}^{(s)}, \boldsymbol{\kappa}^{(s)}(x))\}_{s=1}^{n_k}$ with $\mathbf{d}^{(s)} = \{(d_0(t_j), d_1(t_j))\}_{j=1}^{n_d}$, $t_j = 10j$, $n_d = 6$ and each output vector $\boldsymbol{\kappa}^{(s)}(x)$ contains $n_c = 10$ piecewise constant absorption coefficients distributed over the domain, defined as

$$\boldsymbol{\kappa}^{(s)}(x) = \left(\kappa_1^{(s)}, \kappa_2^{(s)}, \dots, \kappa_i^{(s)} \right), \quad (4)$$

with $\kappa_i^{(s)} = 0.1 + (s-1)0.1$, $s = 1, 2, \dots, n_c = 10$.

Further work will include the training of the ANN and the evaluation of the estimations for different resolution setups. The framework is expected to be a powerful alternative for estimating the absorption coefficient in multi-region heterogeneous media.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

References

- [1] O. P. Bruno and A. Prieto. “Spatially dispersionless, unconditionally stable FC–AD solvers for variable-coefficient PDEs”. In: **Journal of Scientific Computing** 58 (2014), pp. 331–366. DOI: [10.1007/s10915-013-9734-8](https://doi.org/10.1007/s10915-013-9734-8).
- [2] E. L. Gaglioli and O. P. Bruno. “Parallel inverse-problem solver for time-domain optical tomography with perfect parallel scaling”. In: **Journal of Quantitative Spectroscopy and Radiative Transfer** 290 (2022), p. 108300. DOI: [10.1016/j.jqsrt.2022.108300](https://doi.org/10.1016/j.jqsrt.2022.108300).
- [3] S. Haykin. **Neural Networks and Learning Machines**. 3a. ed. New Jersey: Pearson, 2009. ISBN: 9780131471399.
- [4] M. F. Modest. **Radiative Heat Transfer**. 3a. ed. New York: Elsevier Science, 2013. ISBN: 9780123869906.
- [5] F. D. Moura Neto and A. J. Silva Neto. **An Introduction to Inverse Problems with Applications**. Springer, 2014. ISBN: 978-3642325571.
- [6] M. N. Özisik and H. R. B. Orlande. **Inverse Heat Transfer: Fundamentals and Applications**. 2nd. CRC Press, 2021. ISBN: 9781003155157.
- [7] N. G. Roman, P. C. Santos, and P. H. A. Kozen. “ANN-MoC method for inverse transient transport problems in one-dimensional geometry”. In: **Latin-American Journal of Computing** (2024). DOI: [10.5281/zenodo.12191947](https://doi.org/10.5281/zenodo.12191947).
- [8] L. V. Wang and H. Wu. **Biomedical Optics: Principles and Imaging**. Wiley, 2012. ISBN: 9780470177006.