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Sistemas mecânicos sujeitos a carregamentos aleatórios são comuns em diversas aplicações, o que
motiva este trabalho. Exemplos típicos incluem pontes expostas à ação do vento, às ondas do mar
sobre os pilares que as sustentam e ao tráfego de veículos, bem como as pás de turbinas eólicas
submetidas ao vento e um prédio durante um terremoto. Nesses casos, as vibrações aleatórias
geradas pelas forças externas criam respostas estocásticas nos sistemas. Este trabalho tem como
objetivo analisar a resposta de um sistema determinístico, linear e invariante no tempo com um grau
de liberdade do tipo massa-mola-amortecedor, ilustrado na Figura 1, submetido a um carregamento
modelado como um processo estocástico estacionário.

Figura 1: Sistema massa-mola-amortecedor analisado. Fonte: Autoria Própria.

Os parâmetros do sistema são: massa m = 1 kg, constante de amortecimento do amortecedor
c = 2ζωn, rigidez da mola k = 1 N/m. A posição da massa é parametrizada por X e considera-se
condições iniciais de posição e velocidade nulas. A amplitude Fa e frequência Fω do carregamento
estocástico F são modeladas como variáveis aleatórias independentes e seguem distribuição normal
N (1, 1/3). A Equação Ẍ (t) + 2ζωnẊ (t) + ω2

nX (t) = Fa cos(Fωt)/m, com ωn =
√

k/m e ζ =
c/(2mωn), rege a dinâmica do sistema. Este trabalho almeja reproduzir os gráficos da variação
temporal da média e do desvio padrão da resposta para diferentes valores de ζ descritos por
Benaroya e Han [1] com uma abordagem computacional, pelo método de Monte Carlo [2]. Em
seguida, é feita uma análise da densidade espectral do processo estocástico do forçamento e da
resposta para cada ζ considerado.

Para cada valor de ζ considerado, utilizando 30 mil realizações de Fa e Fω, foram calculadas
30 mil realizações da resposta X , e gerados os gráficos da Figura 2. Devido à estacionaridade
da excitação F , as estatísticas amostrais de X convergem para um valor constante. O aumento
do fator de amortecimento reduz o tempo do regime transiente, acelerando a convergência das
estatísticas amostrais de média e desvio padrão. Também foram calculadas as correlações amostrais
do forçamento e da resposta, dadas por rF (t1, t2) = E[F(t1)F(t2)] e rX (t1, t2) = E[X (t1)X (t2)]
para cada valor de ζ. Verificou-se que as correlações calculadas dependiam apenas de um parâmetro
τ = t2− t1, ou seja, rF (τ) = E[F(t)F(t+ τ)] e rX (τ) = E[X(t)X(t+ τ)]. A partir da transformada
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de Fourier de rF (τ) e rX (τ), obteve-se a densidade espectral de F e X . A Figura 3 apresenta os
resultados obtidos.
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Figura 2: À esquerda, as médias amostrais normalizadas, e à direita, os desvios-padrão normalizados de
X para diferentes valores de fator de amortecimento. Fonte: Autoria Própria.
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Figura 3: À esquerda, a densidade espectral do forçamento. À direita, a densidade espectral das
respostas para diferentes fatores de amortecimento. Fonte: Autoria Própria.
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