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In statistical modelling with historical data, a central challenge is effectively integrating informa-
tion from past studies with current data. This is particularly relevant in clinical trials and medical
research, where leveraging historical data can improve the efficiency and robustness of statistical
inferences. A natural approach in this setting is the use of informative priors, which incorporate
prior knowledge into the analysis, thereby enhancing parameter estimation and decision-making.

Among the various methods for constructing informative priors, power priors [5] have gained
significant attention. They allow for controlled borrowing of information from historical data
by adjusting a power parameter, η, which typically ranges between 0 and 1. When η = 0, no
historical information is incorporated, whereas η = 1 fully integrates the historical data into the
current analysis.

Despite their advantages, the posterior distribution in these models is often doubly intractable,
making standard Markov Chain Monte Carlo (MCMC) methods challenging to apply. Current
approaches rely on approximate methods [1, 3], which lack theoretical guarantees and explicit
convergence bounds. This work addresses this gap by developing an exact MCMC algorithm [2, 6]
capable of efficiently sampling from these complex posterior distributions.

Consider the following Bayesian schema:

p(θ | D) =
L(D | θ)π0(θ)∫

Θ
L(D | t)π(t) dt

=
L(D | θ)

Initial prior︷ ︸︸ ︷
π0(θ)

m(D)
.

Definition (Power prior). Let D0 = {d01, d02, . . . , d0N0
}, d0i ⊆ X p be the historical data and let

L(D0 | θ) be a likelihood function assumed to be finite for all θ ∈ Θ ⊆ Rq. Then, the power prior
is defined as

πη(θ | D0) ∝ L(D0 | θ)ηπ0(θ),

where π0(θ) is the initial prior distribution of θ and η is the (fixed) power parameter.

Then, when we want to accommodate the uncertainty in the choice of η, we treat it as a
random variable and assign a prior distribution to it, indexed by φ. In order to compute the
posterior distribution of θ and η, we need to find the normalizing constant (from ()) c0(η), which
is given by

c0(η) =

∫
Θ

L(D0 | t)η dP0(t),
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and the marginal posterior distribution of η as, for a new dataset D,
Notice that, since both c0(η) and

∫
Θ
L(D | t)L(D0 | t)η dP0(t) are intractable, we call this a

doubly-intractable posterior. Previous work [1, 3] has focused on emulating log c0(η) and log c′(η) =
Eπη

[logL(D0 | θ)] through non-parametric models, which has proven to be more effective than
common interpolation methods—particularly when incorporating shape constraints.

Sampling from these posteriors is challenging due to the intractability of standard Metropo-
lis–Hastings acceptance probabilities, making approximate methods like auxiliary variable tech-
niques computationally expensive and lacking convergence guarantees; an alternative is unbiased
event constructions, which enable exact sampling without evaluating normalizing constants.

For instance, applying Barker’s algorithm for MCMC [7] to sample from a target distribution
π(x) ∝ π′(x) with proposal density q(x, y) has become feasible through Bernoulli factory methods.
These methods enable the construction of events with probability αB(x, y) when

αB(x, y) =
π(y)q(y, x)

π(x)q(x, y) + π(y)q(y, x)
=

π′(y)q(y, x)

π′(x)q(x, y) + π′(y)q(y, x)

cannot be directly evaluated [4].
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