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The Restarted Generalized Minimal Residual Method (GMRES(m)) is a widely used iterative
solver for large-scale, sparse, and nonsymmetric linear systems [4]. However, its convergence is
not guaranteed [1]. To improve convergence, the restart parameter m must be properly tuned;
however, there is currently no general rule for selecting its optimal value. The primary challenge
in designing a rule is the internal nonlinear dynamics of GMRES(m), which is well understood
in its construction, but less well understood in its behavior. In this work, we design a system
identification model (SIM) to address the challenge of capturing the internal nonlinear behavior of
GMRES(m). The results show the efficiency of the SIM as an observer of the internal dynamics.
Future works will be oriented towards using the SIM to enhance the convergence of the method.

Let Az = b be the linear system with n x n-matrix A, and n-dimensional vectors x and b. Let m
be the restarting parameter input of GMRES(m) corresponding to the Krylov subspace dimension
built on the matrix A and the initial residual ro given by K, (A, ro) = span{rg, Arg, ..., A" 1ry}.
A cycle of GMRES(m) can be represented by a discrete dynamical system that, starting from an
approximate solution x;, generates another approximate solution z ;41 <~ GM RES(z;,m). Hence,
from an initial approximate solution xg, we collect p cycles of approximate solutions of GMRES(m)

in matrices X = [zg ... 2p—1] and X’ = [z1 ... zp] (both with dimension n x p), and the restarting
parameters m collected in a matrix X = [myg ... m,_1]. Hence it is obtained
X'~ HX + BY. (1)

where H and B are matrices to be determined. To this end, the expression (1) is rewritten as
X' ~ GQ where G = [H B] € R+ and Q = [XT Y77 with Q € RM™*UXP. The best-fit
operator G is given as: G = argming || X' — GQ||r = X’ QF where || ||r is the Frobenius norm and
T denotes the pseudo-inverse. Then, since for each measurement trio X, X', and Y; Q contains
both the measurement and control snapshot information, then matrices H and input matrix B
are determined by structurally corresponding to operator G [3|. Every p cycles the model (1) is
recomputed. Hence, two main questions arise: (a) what should be the size p (i.e., the number of
cycles in a batch) to be collected in X and (b) how can p be updated adaptively to maintain a
good approximation of the GMRES(m) dynamics. In this work, p() denotes the number of cycles
in the jth batch and is computed adaptively according to
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In this formula, the dispersion of the GMRES(m) approximations in the (j—1)th batch is measured

by Disp? Y = Zi;l ‘mgMQES’k — mgMi%)ES,kle where nggEs,k is the kth approximation in
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that batch, and Disp,,, is a reference value set as the maximum dispersion observed in previous
batches. This adaptive strategy dynamically adjusts the batch size p/) based on the convergence
behavior observed in the preceding batch.

To illustrate the potential of the adaptive DMDc to capture the internal dynamics of GMREs(m),
we present two examples chosen by its difficulty of convergence. Figure 1 shows two simulation sce-
narios employing benchmark matrices from the SuiteSparse Matrix Collection repository [2]. For
the Zhong and Morgan [5] benchmark (see subfigure (a)), the parameters are: m = 3, tol = 10715,
Pmin = D, Pmax = 15, and xg = 0. For the Cavity matrix [2]| (see subfigure (b)), the parameters
are set as follows: m = 30, tol = 107, puin = 4, Pmax = 20, and 29 = 0. In both cases, the
GMRES(m) (in blue) is compared with the DMDc norms residuals, showing results with constant
p (in green) and adaptively chosen p (in magenta) using equation (3).
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Figure 1: Comparison of GMRES(m) and DMDc residual norms for benchmark matrices.

Observe that, depending on the choice of the parameter p in DMDc, a simpler adaptive linear
dynamical model (1) captures the nonlinear dynamics of GMRES(m) when p is chosen adaptively.
This is good news, as new control laws can be designed based on the linear model to enhance the
convergence of GMRE(m) by using the system identification model DMDec. This is a topic for the
next work.
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