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Some of the earliest references to mathematical rumor models can be found in [1, 4]. The
Maki-Thompson rumor model on a connected graph can be informally described as follows. The
vertices represent individuals who can be classified into three categories: ignorants, spreaders, and
stiflers. A spreader transmits the rumor to any of its nearest ignorant neighbors at a rate of one.
At the same rate, a spreader becomes a stifler after contact with other nearest-neighbor spreaders
or stiflers. In this work, we consider an extension of the Maki-Thompson rumor model on an
infinite Cayley tree, assuming that as soon as an individual hears the rumor, they either spread it
with probability p € (0, 1] or remain neutral, becoming a stifler, with probability 1 — p. Of course,
if we take p = 1 we recover the basic model. For a review of recent results on trees, we refer the
reader to [2, 3]. We focus our attention on the infinite Cayley tree of coordination number d + 1,
with d > 2, T = Tyq. The model is a continuous-time Markov process (1;);>0 with state space
S = {0,1,2}T. That is, at time ¢ the state of the process is a function n; : T — {0,1,2}. We
assume that each vertex v € T represents an individual, and we say that such individual is an
ignorant if n(v) = 0, a spreader if n(v) = 1, or a stifler if n(v) = 2. Moreover, if the system is in
configuration 1 € S, the state of vertex v changes according to the following transition rates:
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where n;(v,n) = >, ., 1{n(u) =i} is the number of nearest-neighbors of vertex v in state i for the
configuration 7, for ¢ € {1,2}. Formally, (1) means that if the vertex v is, say, in state 0 at time ¢
then the probability that it will be in state 1 at time ¢ + h, for small A, is pnq(z,n)h + o(h), where
o(h) represents a function such that limy_,oo0(h)/h = 0. We call the Markov process (1;)¢>0 the
Maki-Thompson rumor model on T with probability p of spreading, MT(T, p)-model for short. In
addition, we refer to the case when 79(0) = 1 and 7g(v) = 0 for all v # 0 as the standard initial
configuration.

Definition 1. Let p € (0,1] and consider the MT(T, p)-model with the standard initial configura-
tion. We say that the rumor propagates if, for any t > 0, there exists a vertex v € T such that
ne(v) = 1. Otherwise, we say that the rumor becomes extinct.

We denote the rumor propagation probability as 6(d,p) and we observe that Definition 1 is
equivalent to [3, Definition 1]. It is not difficult to see, by a coupling argument, that 6(p,d) is
non-decreasing as a function of p. That is, 8(p1,d) < 0(p2,d), if p1 < pa. Therefore, we can define
the critical parameter of the model as p.(d) := inf{p > 0: 6(p,d) > 0}.
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Theorem 1. Let p € (0,1],d > 3, and consider the MT(Tq,p)-model with the standard initial

configuration. Then
1
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where I'(a, z) is the incomplete gamma function. Moreover, p.(d) € (0,1) for any d > 3, and

Pc(d) ~ U ﬁ (3)

Theorem 1 becomes more interesting when we realize that the MT(T4, p)-model exhibits a phase
transition for any d > 3. We do not consider the case d = 2 because for this case [3, Theorem 1]
guarantees that p. = 1. For approximations of p.(d), see Table 1.

Table 1: Values of p.(d) for d € {3,...11}.
d 3 4 5 6 7 8 9 10 11
p. 0.8205 0.6620 0.5634 0.4955 0.4454 0.4067 0.3759 0.3505 0.3293

The main idea behind the proof of Theorem 1 is the identification of an underlying branching
process related to the rumor model. After doing that we can apply well-known results of the theory
of branching processes. This approach has been used before in [2, 3] to study rumor models on
infinite random Cayley trees. For more details of the proofs of this result and applications for an
extended model see [5].
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