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No contexto de simulações de hidrodinâmica, as equações de águas rasas são objeto de estudo
extensivo, sendo conhecidos diversos métodos numéricos para a aproximação de sua solução. Neste
cenário, buscamos conhecer a eficiência de uma adaptação proposta por [3] de um desses métodos,
a fim de que considere erosão, onde os perfis da água e do solo se alteram com o tempo.

Considere um canal natural com fluxo de água majoritário em uma direção, cujo comprimento é
significativamente maior que sua profundidade (hipótese de águas rasas), e que o leito deste canal é
erodível. Neste caso, o fluxo da água pode ser modelado pelas equações de Saint-Venant [2] (forma
unidimensional das equações de águas rasas), e o fluxo de sedimentos a nível do leito pela equação
de Exner, gerando o sistema Saint-Venant-Exner [3]:
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onde x [m] ∈ Ω = [xl, xr] e t [s] ∈ I = [t0, tf ] são as variáveis de espaço e tempo, a área molhada
A(x, t) [m2] e a vazão Q(x, t) [m3/s] são as quantidades conservadas, as quais buscamos a solução
em todo o ponto do domínio Ω × I. A aceleração da gravidade é g [m/s2], zb [m] e z [m] são a
cota do leito e a altura d’água em relação a um horizonte de referência, nM [s/m1/3] o coeficiente
de rugosidade de Manning, que controla a força do atrito, e R [m] o raio hidráulico, razão entre a
área molhada e o perímetro molhado. Por fim, temos qb = Agv

3 [m2/s] o fluxo de sedimentos por
unidade de largura, que depende da velocidade média do fluxo de água v [m/s] e de um coeficiente
empírico Ag [−].

Para simular a dinâmica de tal sistema, resolvemos estas equações por meio de uma adaptação
do método de Ying-Khan-Wang (YKW), que originalmente é um método de volumes finitos con-
servativo de dois passos e bem balanceado de características Upwind para a resolução das equações
de Saint-Venant, acoplando a ele um terceiro passo que resolva a equação de Exner.

Este método consiste em três passos a cada evolução temporal, resolvendo por primeiro a
evolução da área,
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instante de tempo tn. No segundo passo, obtemos os valores de Q em tn+1 por
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sendo k um coeficiente que controla a característica Upwind do método, sendo 1 em fluxos da
esquerda para direita, 0 para fluxos contrários, e 1

2 quando não há direção definida, wdown e

wup pesos ponderados nas aproximações downwind,
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consequentemente, o termo entre parênteses é também uma aproximação.
Por fim, o terceiro passo é a atualização da cota do leito que, em casos de velocidade de fluxo

de água positiva, é dada por
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Neste trabalho, realizamos simulações de fluxo de água com erosão do leito pelo método YKW
adaptado e comparamos as soluções obtidas com os resultados de métodos clássicos, como o método
de Lax-Friedrichs Local [5] e métodos de Galerkin Descontínuo [4]. Os resultados indicam que o
método YKW fornece soluções estáveis e precisas, particularmente em experimentos nos quais a
dinâmica atinge um estado de equilíbrio. Em tais cenários, traçamos comparações com soluções
analíticas obtidas segundo a metodologia proposta em [1].
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