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O método Multigrid (MG) está entre os métodos iterativos mais eficientes para equações dife-
renciais parciais discretas. Inicialmente projetados para equações elípticas, os métodos MG foram
amplamente adotados para resolver inúmeros problemas graças ao seu custo de computação ideal
que é escalonado linearmente em relação ao número de nós computacionais para matrizes esparsas,
superando muitos outros métodos numéricos [4]. O método é baseado em dois princípios funda-
mentais: suavização de erro e correção em malha grossa. O método MG combina processamento
em múltiplos níveis de discretização, transferência de informação entre malhas via operadores de
restrição e prolongamento [3]. A implementação eficiente de algoritmos MG para equações elípti-
cas requer ferramentas robustas de análise de convergência. Embora muitos códigos executem sem
erros aparentes, sua eficiência e acurácia prática frequentemente fica abaixo das expectativas teó-
ricas. Este trabalho apresenta a análise de modo local como metodologia fundamental para avaliar
e prever o desempenho desses métodos iterativos. O ponto de partida tradicional para análise de
convergência envolve o cálculo do raio espectral (o maior valor absoluto dos autovalores) da matriz
de iteração correspondente, também conhecido como o fator de convergência assintótico. Paralela-
mente, o conceito de fator de suavização (representando o maior fator de atenuação dos modos de
alta frequência do erro em cada iteração de relaxação) foca especificamente nos modos oscilatórios
do erro. Contudo, a abordagem baseada em autovalores mostra-se computacionalmente proibitiva
para problemas complexos, limitando sua aplicabilidade prática. A análise de modo local (tam-
bém conhecida como análise de modos normais ou análise de Fourier), desenvolvida pioneiramente
por Achi Brandt [1], supera essas limitações através de uma abordagem inovadora. A principal
importância do fator de suavização é que ele separa o projeto da relaxação (método iterativo) no
interior do domínio de todas as outras questões algorítmicas. Além disso, estabelece um valor
ideal para o qual o desempenho do algoritmo completo pode ser posteriormente avaliado. Esta
técnica baseia-se em três princípios fundamentais [2]: supor que o processo é local (cada incógnita
é atualizada usando informações de vizinhos próximos), que o domínio é infinito (como o processo
é considerado um processo local, as condições de contorno podem ser desconsideradas durante as
iterações de relaxação nos pontos internos) e que a relaxação seja um processo linear com matriz
associada denotada por R. Denotando-se e(m) o erro algébrico no m-ésimo passo da relaxação,
com evolução sob a ação de R descrita por e(m+1) = Re(m). A abordagem da análise de modo
local é assumir que o erro consiste em modos de Fourier e determinar como a relaxação atua sobre
esses modos. Os modos de Fourier, [2], têm a forma wj = sin

(
jkπ
n

)
, onde o número de onda k

é um número inteiro entre 1 e n. Isso significa que o termo θ = kπ
n varia aproximadamente de 0

a π. Com a suposição de um domínio infinito (sem fronteiras ou condições de contorno a serem
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satisfeitas), os modos de Fourier não precisam estar restritos a números de onda discretos. Em vez
disso, considera-se modos da forma wj = eιjθ, onde o número de onda θ pode assumir qualquer
valor no intervalo (−π, π]. A notação ι =

√
−1 é adotada para evitar confusão entre i e os índices

da malha. O modo correspondente a um determinado θ tem um comprimento de onda de 2πh
|θ| .

Valores de |θ| próximos de zero correspondem a ondas de baixa frequência, enquanto valores de
|θ| próximos de π correspondem a ondas de alta frequência. A escolha de uma exponencial com-
plexa facilita os cálculos e leva em conta tanto os termos de seno quanto de cosseno. A análise
de modo local não é completamente rigorosa, a menos que os modos de Fourier sejam autovetores
da matriz de relaxação, o que, em geral, não é o caso. No entanto, essa análise é útil para os
modos de erro de alta frequência, que tendem a se assemelhar muito aos autovetores da matriz de
relaxação. Por essa razão, a análise de modo local é usada para estudar o efeito de suavização nos
modos de alta frequência. Aplicando o método para problemas unidimensionais, assumindo que o
erro no m-ésimo passo da relaxação, no ponto de malha j, consiste em um único modo da forma
e
(m)
j = A(m)eιjθ, onde− π < θ ≤ π. O objetivo é determinar como a amplitude do modo, A(m),

muda a cada varredura de relaxação. Em cada caso que consideramos, as amplitudes em passos
sucessivos estão relacionadas por uma expressão da forma A(m+ 1) = G(θ)A(m), onde a função
G(θ) descreve como as amplitudes do erro evoluem, é chamada de fator de amplificação. Para que
o método convirja, é necessário que |G(θ)| < 1 para todo θ. A relaxação é utilizada no multigrid
para eliminar os modos oscilatórios do erro, portanto, a quantidade de interesse é, na verdade, o
fator de suavização, que é obtido restringindo o fator de amplificação, G(θ), aos modos oscilatórios
π
2 ≤ |θ| ≤ π. Especificamente, definimos o fator de suavização como µ = maxπ

2 ≤|θ|≤π |G(θ)|. Este
é o fator pelo qual podemos esperar que os modos oscilatórios sejam atenuados (no pior caso)
a cada varredura de relaxação. Como exemplo de aplicação, o problema modelo unidimensio-
nal −u′′(x) + c(x)u(x) = f(x) foi discretizado por diferenças finitas de segunda ordem clássico
e aplicado relaxação de Jacobi ponderado. Note que o erro algébrico ej também governado pela
mesma relaxação de Jacobi ponderado. Assumindo que o erro consiste do modo anteriormente
descrito (e(m)

j = A(m)eιjθ) e substituindo na expressão da discretização da relaxação de Jacobi
foi obtido que o fator de amplificação é G(θ) = 1− 2ωsen2(θ/2) e o fator de suavização µ = 1/3,
isto diz que os componentes oscilatórios são reduzidos pelo menos por um fator de três com cada
relaxamento. De maneira análoga foi aplicado ao problema modelo o método para a relaxação de
Gauss-Seidel, obtendo-se o fator de amplificação G(θ) = eιθ

2−e−ιθ e o fator de suavização µ = 0, 45.
A análise do modo local pode ser facilmente estendida para duas ou mais dimensões. Através da
análise de modo local, podemos prever sistematicamente o desempenho de diversos esquemas de
relaxação, permitindo a seleção informada do método mais adequado. Esta metodologia mostra-se
particularmente valiosa na extensão para problemas multidimensionais e operadores diferenciais
mais complexos, mantendo sua eficácia como ferramenta de análise e otimização de algoritmos.
A versatilidade da abordagem consolida sua posição como instrumento indispensável no projeto e
implementação de métodos multigrid eficientes.
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