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A busca pelo aprimoramento de imagens é incentivada pelas diversas aplicações em que o
reconhecimento e a análise de informações visuais são fundamentais, como em sistemas de vigilância
e diagnósticos médicos. Em alguns contextos, as imagens capturadas podem conter sobreposições
indesejadas que dificultam a identificação de elementos. Um exemplo disso ocorre quando um
quadro é fotografado através de um vidro, resultando na captação simultânea da imagem do quadro
e do reflexo do vidro, [2]. Problemas dessa natureza podem ser modelados a partir de técnicas de
Independent Component Analysis (ICA), que visam estimar componentes independentes a partir de
sinais multivariados disponíveis. Esses problemas correspondem a minimização da função objetivo

f(Y ) = −
N∑
l=1

||diag
(
Y TAlY

)
||2F , (1)

onde Y ∈ St(p, n) = {Y ∈ Rn×p | Y TY = Ip}, em que Ip é a matriz indentidade de ordem p, com
p ≤ n, as matrizes A1, A2, . . . , AN estão associadas às imagens sobrepostas, || · ||F é a norma de
Frobenius e diag(M) denota a matriz diagonal cujos elementos coincidem com a diagonal principal
da matriz M . Este problema é resolvido por [4] usando o método de Newton clássico, com uma
estratégia de vetorização. Este método pode ser visto no Algoritmo 3.1 em [4].

Buscando garantir o decrescimento da função objetivo e obter um método mais eficiente, neste
trabalho, vamos empregar o método de Newton, apresentado por [4], introduzindo a busca linear
de Armijo. Essa busca fornece um comprimento de passo αk > 0 que deve satisfazer

f(Y )− f
(
RY (αkη)

)
≥ −σ⟨grad f(Y ), αkη⟩, (2)

em que RY (αkη) = qf(Y + αkη), onde qf(·) denota o fator Q da decomposição QR da matriz,
⟨grad f(Y ), αkη⟩ = αk tr(grad f(Y )T η), onde tr é o traço de uma matriz, σ ∈ (0, 1) e η pertence
ao espaço tangente de St(p, n) em Y . Veja em [1].

Em nosso estudo, consideramos n = 3 imagens disponíveis em [5], conforme mostra a Figura 1.
As imagens foram carregadas como matrizes e, em seguida, recortadas de modo a obter a mesma
quantidade de pixels, isto é, mesma dimensão x × y. Além disso, em virtude das imagens serem
coloridas, foi necessário transformá-las em preto e branco.

Figura 1: Imagens originais. Fonte: [5].
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As matrizes correspondentes a cada imagem foram vetorizadas, empilhando as colunas de cada
matriz e obtendo 3 vetores I1, I2 e I3 com dimensão xy correspondente as imagens selecionadas.
Em seguida, esses vetores foram organizados em uma matriz S = [IT1 , I

T
2 , IT3 ]T de dimensão n×xy.

Por fim, calculamos a mistura X = MS, onde M é uma matriz aleatória, escolhida de modo que
a soma dos elementos de cada linha seja igual a 1. Este produto gerou as imagens sobrepostas
apresentadas na Figura 2.

Figura 2: Imagens sobrepostas. Fonte: Elaboração do autor.

A partir dessas imagens sobrepostas é possível obter aproximações das imagens originais sem
qualquer informação sobre M . Uma das ferramentas usadas para isso é a função de constraste
conhecida por JADE (Joint approximate diagonalization of eigen-matrices). Essa função é definida
como a soma dos quadrados dos N culmulantes de quarta ordem. Para maiores detalhes veja
[4]. Esses culmulantes fornecem informações sobre a distribuição não gaussiana destes sinais,
permitindo identificar a não indepedência entre eles e, consequentemente, viabilizando a separação
dos componentes misturados, [3]. Para os testes realizados, consideramos o tempo de CPU e o
número de iterações, com o intuito de mostrar a eficiência do método de Newton amortecido para
este problema, comparado ao método clássico.
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