
A note over constructions of cyclic codes
over certain semigroups

Antonio Aparecido de Andrade
Department of Mathematics, São Paulo State University

15054-000, São José do Rio Preto, SP
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Abstract: Let B be any finite commutative ring with identity. In this case, · · · ⊂ B[X; 1
pk
Z0] · · ·

⊂ B[X; 1
p2
Z0] ⊂ B[X; 1

pZ0], where p is a prime number and k ≥ 1, is the descending chain of
commutative semigroup rings. All these semigroup rings are containing the polynomial ring
B[X;Z0]. In this paper, we introduced a construction technique of cyclic codes through the semi-
group ring B[X; 1

pk
Z0] instead of a polynomial ring.

Key-words: Semigroup ring, monoid ring, cyclic codes

1 Introduction

In algebra the finite commutative rings are of most interest as they have many applications.
The ideals in these structures are playing very essential role for their applications and it is often
important to know when the ideals in a ring are singly generated. The most useful class of rings
in this perspective is the polynomial rings in one indeterminate with coefficients from a finite
field, that is an Euclidean domain. The coding for error control has vital role in the design of
modern communication systems and high speed digital computers. Most of the classical error-
correcting codes are ideals in finite commutative rings, especially in quotient rings of Euclidean
domains of polynomials and group rings, that is cyclic codes are principal ideals in the quotient
ring Fq[X]/(Xn − 1), where q is a power of a prime.

This paper is organized as follows. In Section 2, we present the exposition of the problem.
In Section 3, we give some basic results of semigroups and semigroup rings necessary for the
construction of the linear codes. In Section 4, we present the construction of cyclic codes through
the semigroup ring B[X; 1

pk
Z0], where p is a prime number and k ≥ 1. Finally, in Section 5, the

concluding remarks are drawn.

2 Exposition of the problem

Cazaran and Kelarev [1] established necessary and sufficient conditions for an ideal to be the
principal; further they described all finite quotient rings Zm[X1, · · · , Xn]/I, where I is an ideal
generated by an univariate polynomial, which are commutative principal ideal rings. In another
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paper, Cazaran and Kelarev [2] characterize the certain finite commutative rings as a principal
ideal rings. Though, the extension of a BCH code C embedded in a semigroup ring F [S], where
S is a finite semigroup, was considered in 2006 by Cazaran et. all [3], where an algorithm
was established for computing the weights of extensions for these codes embedded in semigroup
rings as ideals. The information relating various ring constructions and about polynomial codes
are given by Kelarev [4], where in Sections 9.1 and 9.2 are devoted for error-correcting codes
in ring constructions very closely related to semigroup rings. Specially Section 9.1 is dealing
error-correcting cyclic codes of length n which are ideals in group ring F[G], where F is a field
and G is a finite torsion group of size n. Another work concerning extensions of BCH codes
in various ring constructions has been given by Kelarev in [5] and [6], where the results can
also be considered as the special cases of semigroup rings of particular type. In [7], the authors
discussed cyclic codes through the polynomial ring B[X;Z0], where B is any finite commutative
ring with identity. In this paper, we introduce a construction technique of cyclic codes through
a monoid ring B[X; 1

pk
Z0], where p is any prime integer and k ≥ 0, instead of a polynomial ring

B[X;Z0].

3 Basic results from monoid ring

Let (S, ∗) be a commutative semigroup and (R,+, ·) a commutative associative ring. The set
J of all finitely nonzero functions f from S into R is a ring with respect to binary operations
addition and multiplication defined as (f + g)(s) = f(s) + g(s) and (fg)(s) =

∑
t∗u=s f(t)g(u),

where the symbol
∑

t∗u=s indicates that the sum is taken over all pairs (t, u) of elements of S
such that t ∗u = s and if s is not expressible in the form t ∗u for any t, u ∈ S, then (fg)(s) = 0.
The set J is known as semigroup ring of S over R. If S is a monoid, then J is called monoid ring.
This ring J is represented as B[S], where S is a multiplicative semigroup, and the elements of
J are written either as

∑
s∈S f(s)s or as

∑n
i=1 f(si)si. The representation of J will be R[X;S]

whenever S is an additive semigroup. As there is an isomorphism between additive semigroup
S and multiplicative semigroup {Xs : s ∈ S}, it follows that a nonzero element f of R[X;S]
is uniquely represented in the canonical form

∑n
i=1 f(si)X

si =
∑n

i=1 fiX
si , where fi 6= 0 and

si 6= sj for all i 6= j. Degree is not generally defined in commutative semigroup rings but if the
semigroup S is a totally ordered semigroup, we can define the degree of a generalized polynomial
of the semigroup ring R[X;S]. If f =

∑n
i=1 fiX

si is the canonical form of the nonzero element
f ∈ R[X;S], where s1 < s2 < · · · < sn, then sn is called the degree of f and we write deg(f) = sn
[8].

If S is Z0, the additive monoid of non negative integers and B is an associative commutative
ring, then the semigroup ring is simply the polynomial ring B[X]. It can be observed that
B[X] = B[X;Z0] ⊂ B[X; 1

pk
Z0]. Furthermore, as 1

pk
Z0 is an ordered monoid, it follows that we

can define the degree of elements in B[X; 1
pk
Z0].

4 Construction of cyclic codes

Let f(X
1

pk ) ∈ B[X; 1
pk
Z0] be a monic generalized polynomial of degree n. Thus,

B[X; 1

pk
Z0]

(f(X
1
pk ))

is

the set of residue classes of generalized polynomials in B[X; 1
pk
Z0] module the ideal (f(X

1

pk ))

and a class can be represented as a(X
1

pk ) = a0 + a 1

pk
X

1

pk + · · · + a pkn−1

pk

X
pkn−1

pk . A principal

ideal, which consists of all multiples of a fixed generalized polynomial g(X
1

pk ) by elements of

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0223 010223-2 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0223


B[X; 1

pk
Z0]

(f(X
1
pk ))

, called generator generalized polynomial of the ideal. Now, we shall prove some results

which show a method of getting the generator generalized polynomial of a principal ideal. This

method shall provide a base for the construction of a principal ideal in the ring
B[X; 1

pk
Z0]

(f(X
1
pk ))

. In

what follows <pk shall represent the factor ring
B[X; 1

pk
Z0]

(f(X
1
pk ))

.

Definition 1. A linear code C of length pkn over B is a B-submodule of the B-module of all pkn-
tuples of Bpkn, and a linear code C over B is cyclic, if when v = (v0, v 1

pk
, v 2

pk
, v1, · · · , v pkn−1

pk

) ∈

C, every cyclic shift v(1) = (v pkn−1

pk

, v0, v 1

pk
, · · · , v pkn−2

pk

) ∈ C, with vi ∈ B for 0 ≤ i ≤ pkn−1
pk

.

Theorem 1. A subset C of <pk , where p is any prime integer and k ≥ 0, is a cyclic code if and
only if C is an ideal of <pk .
Proof. Assume C is an ideal in <pk , and hence a B-module. It is also closed under multiplication

by any ring element, in particular under multiplication by X
1

pk . Hence, C is a cyclic code.
Conversely, let the subset C is a cyclic code. Thus, C is closed under addition and multiplication

by X
1

pk . Therefore, it is closed under multiplication by powers of X
1

pk and linear combinations

of powers of X
1

pk . This means, C is closed under multiplication by an arbitrary generalized
polynomial. Hence, C is an ideal.

Corollary 1. [7, Theorem 2.1] A subset C of <pk is a cyclic code if and only if C is an ideal
of <pk .

Lemma 1. Let I be an ideal in the ring <pk , where p is any prime integer and k ≥ 0. If the
leading coefficient of some generalized polynomial of lowest degree in I is a unit in B, then there
exists a unique monic generalized polynomial of minimal degree in I.

Proof. Let f(X
1

pk ) ∈ I with lowest degree r in I. If the leading coefficient ar of f(X
1

pk ) is a

unit in B, then it is always possible to get a monic generalized polynomial f1(X
1

pk ) = arf(X
1

pk )

with the same degree in I. Now, if both g(X
1

pk ) and f(X
1

pk ) are monic generalized polynomials

of minimal degree r in I, then the generalized polynomial k(X
1

pk ) = f(X
1

pk ) − g(X
1

pk ) is in I

and has degree fewer than r. Therefore, by the choice of f(X
1

pk ) follows that k(X
1

pk ) = 0, and

hence, f(X
1

pk ) = g(X
1

pk ).

Corollary 2. [7, Lemma 2.2] Let I be an ideal in the ring <pk . If the leading coefficient of some
polynomial of lowest degree in I is a unit in B, then there exists a unique monic polynomial of
minimal degree in I.

Theorem 2. Let J be an ideal in the ring <pk , where p is any prime integer and k ≥ 0. If the

leading coefficient of some generalized polynomial g(X
1

pk ) of lowest degree in ideal J is a unit

in B, then I is generated by g(X
1

pk ).

Proof. Let a(X
1

pk ) be a generalized polynomial in J . By Euclidean algorithm, it follows that there

are unique generalized polynomials q(X
1

pk ) and r(X
1

pk ) with a(X
1

pk ) = q(X
1

pk )g(X
1

pk )+r(X
1

pk ),

where r(X
1

pk ) = 0 or deg(r(X
1

pk )) < deg(g(X
1

pk )). So, clearly r(X
1

pk ) ∈ J . Hence, by the choice

of g(X
1

pk ), it follows that r(X
1

pk ) = 0, and therefore, a(X
1

pk ) = q(X
1

pk )g(X
1

pk ). Therefore, J

is generated by g(X
1

pk ).
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Corollary 3. [7, Theorem 2.2] Let J be an ideal in the ring <pk . If the leading coefficient of
some polynomial g(X) of lowest degree in ideal J is a unit in B, then J is generated by g(X).

Lemma 2. Let r(X
1

pk ) be a generalized polynomial in B[X; 1
pk
Z0]. If deg(r(X

1

pk )) < deg(f(X
1

pk ))

and r(X
1

pk ) 6= 0, then r(X
1

pk ) is nonzero in <pk .

Proof. If r(X
1

pk ) = 0, then there is q(X
1

pk ) 6= 0 in B[X; 1
pk
Z0] such that r(X

1

pk ) = f(X
1

pk )q(X
1

pk ).

Since f(X
1

pk ) is regular and r(X
1

pk ) 6= 0, it follows that deg(r(X
1

pk )) = deg(f(X
1

pk ))+deg(q(X
1

pk ))

≥ deg(f(X
1

pk )), which is a contradiction. Hence, r(X
1

pk ) 6= 0.

Corollary 4. [7, Lemma 2.2] Let r(X) be a generalized polynomial in B[X;Z0]. If deg(r(X)) <
deg(f(X)) and r(X) 6= 0, then r(X) is nonzero in <pk .

Lemma 3. Let I be an ideal in the ring <pk , where p is any prime integer, k ≥ 0 and g(X
1

pk )

∈ B[X; 1
pk
Z0] with leading coefficient unit in B such that deg(g(X

1

pk )) < deg(f(X
1

pk )). If

g(X
1

pk ) ∈ I and has lowest degree in I, then g(X
1

pk ) divides f(X
1

pk ) in B[X; 1
pk
Z0].

Proof. According to Euclidean algorithm for commutative rings, it follows that there are unique

polynomials q(X
1

pk ) and r(X
1

pk ) such that 0 = g(X
1

pk )q(X
1

pk ) + r(X
1

pk ), where r(X
1

pk ) = 0 or

deg(r(X
1

pk )) < deg(g(X
1

pk )). Thus, r(X
1

pk ) = −g(X
1

pk )q(X
1

pk ), i.e., r(X
1

pk ) is in I. So, it

follows by the choice of g(X
1

pk ), that r(X
1

pk ) = 0. Again, by Euclidean algorithm for commu-

tative rings, it follows that there are unique generalized polynomials q1(X
1

pk ) and r1(X
1

pk ) such

that f(X
1

pk ) = g(X
1

pk )q1(X
1

pk )+r1(X
1

pk ), where r1(X
1

pk ) = 0 or deg(r1(X
1

pk )) < deg(g(X
1

pk )).

So, 0 = g(X
1

pk )q1(X
1

pk ) + r1(X
1

pk ) = g(X
1

pk )q(X
1

pk ) + r(X
1

pk ). Thus, q1(X
1

pk ) = q(X
1

pk ) and

r1(X
1

pk ) = r(X
1

pk ) = 0. By Lemma 2, it follows that r1(X
1

pk ) = 0, and therefore, g(X
1

pk )

divides f(X
1

pk ).

Corollary 5. [7, Lemma 2.2] Let I be an ideal in the ring < and g(X) ∈ B[X;Z0] with leading
coefficient unit in B such that deg(g(X)) < deg(f(X)). If g(X) ∈ I and has lowest degree in I,
then g(X) divides f(X) in B[X;Z0].

Theorem 3. Let I be an ideal in the ring <pk , where p is any prime integer and k ≥ 0. If

g(X
1

pk ) divides f(X
1

pk ) and g(X
1

pk ) ∈ I, then g(X
1

pk ) has lowest degree in (g(X
1

pk )).

Proof. Suppose that there is b(X
1

pk ) in (g(X
1

pk )) such that deg(b(X
1

pk )) < deg(g(X
1

pk )). Since

b(X
1

pk ) ∈ (g(X
1

pk )), it follows that b(X
1

pk ) = g(X
1

pk )h(X
1

pk ) for some h(X
1

pk ) ∈ R. Thus,

b(X
1

pk )− g(X
1

pk )h(X
1

pk ) ∈ (f(X
1

pk )), i.e., b(X
1

pk )− g(X
1

pk )h(X
1

pk ) = f(X
1

pk )a(X
1

pk ) for some

a(X
1

pk ) in B[X; 1
pk
Z0]. This gives b(X

1

pk ) = g(X
1

pk )h(X
1

pk ) + f(X
1

pk )a(X
1

pk ). Since g(X
1

pk )

divides f(X
1

pk ), and so, g(X
1

pk ) divides g(X
1

pk )h(X
1

pk ) + f(X
1

pk )a(X
1

pk ), which implies that

g(X
1

pk ) divides b(X
1

pk ), which is a contradiction. Hence, g(X
1

pk ) has lowest degree in (g(X
1

pk )).

Corollary 6. [7, Theorem 2.4] Let I be an ideal in the ring <pk . If g(X) divides f(X) and
g(X) ∈ I, then g(X) has lowest degree in (g(X)).

5 Conclusion

In [7], cyclic codes over finite rings with length n = qmt − 1, where m, t are positive integers
and q is any prime integer, are defined. Though in this paper, we obtained cyclic codes over
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finite rings with length n ≤ qp
kmt − 1 where p is a prime integer and k = 0, 1, 2, · · · . Also, we

used the monoid ring B[X; 1
pk
Z0] instead of a polynomial ring B[X;Z0], where B is any finite

commutative ring with identity. Linear codes obtained through the technique of a monoid ring
is better than the linear codes based on polynomial rings [9].
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