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Seja G = (V, E) um grafo simples com conjunto de vértices V' = {v1,...,v,} e conjunto de
arestas . Dizemos que uma matriz simétrica A = (a;;) de ordem n x n é associada ao grafo G
se, para todo i # j, a;; # 0 se e somente se {v;,v;} € E. Definimos S(G) como o subconjunto
de todas as matrizes simétricas associadas ao grafo G. Denotaremos por Spec(A) o multiconjunto
dos autovalores da matriz A. Definimos a multiplicidade maxima de um grafo G como

M(G) := max{ma(\) : A € S(G), )\ € Spec(A)}, (1)

onde m4(\) denota a multiplicidade de A como autovalor da matriz A. Este pardmetro esta
associado a uma classe de problemas em Teoria Matricial Combinatoéria, denominada Problema
Inverso de Autovalor para Grafos (ou IEP-G, do inglés Inverse Figenvalue Problem for Graphs),
que tem recebido atencdo de pesquisadores (veja [1], por exemplo). Dado um grafo G, o objetivo é
determinar todos os possiveis espectros de uma matriz A € S(G). Dentro da classe de problemas
inversos, ha duas questoes fundamentais: a Solubilidade e a Computabilidade. A primeira diz
respeito a determinar se existe uma matriz A € S(G) que seja solu¢ao para determinado problema
inverso associado a G, enquanto a segunda destina-se a construir uma matriz A que seja uma
solugao para tal problema.

Nosso interesse concentra-se no estudo do parametro M(G) quando G é uma arvore. Em [3] é
obtida uma relagao entre a multiplicidade méxima de uma &rvore T' e seu numero de cobertura por
caminhos, denotado por P(T'). O numero de cobertura por caminhos de uma arvore T' é o menor
namero de caminhos disjuntos de T' que cobrem todos os vértices de T'. Por [3], temos que:

M(T) = P(T). (2)

Neste trabalho, vamos apresentar um método para construir matrizes simétricas de arvores com
pelo menos um autovalor A € R de multiplicidade maxima. Para isso, faremos uso de um algoritmo
apresentado em [2], que age sobre uma arvore T' com pesos, onde esses pesos estdo associados as
entradas de uma matriz A € S(T).

Utilizando o algoritmo de [2] e uma cobertura minima por caminhos de uma arvore, fomos
capazes de construir uma matriz A € S(T) com pelo menos um autovalor A € Spec(A) tal que
ma(A) = M(T). Além disso, nossa construgao permite escolher A com essa propriedade como qual-
quer namero real. A Figura 1 mostra uma arvore 7' com pesos, com o autovalor 1, multiplicidade
3 = P(T) e sua cobertura minima por caminhos em destaque. O peso em cada aresta {v;,v;} re-
presenta a entrada a,;; da matriz A € S(T'), enquanto o peso no vértice v; indica a entrada diagonal
a;; de A. Observamos que as arestas com peso 1 na Figura 1 podem ter valores arbitrarios como
peso, sem interferir na multiplicidade maxima do autovalor 1, os quais foram escolhidos iguais a 1
por simplicidade.
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Figura 1: Arvore T com m (1) = 3 = P(T). Fonte: Dos autores
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