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Seja G = (V,E) um grafo simples com conjunto de vértices V = {v1, ..., vn} e conjunto de
arestas E. Dizemos que uma matriz simétrica A = (aij) de ordem n × n é associada ao grafo G
se, para todo i ̸= j, aij ̸= 0 se e somente se {vi, vj} ∈ E. Definimos S(G) como o subconjunto
de todas as matrizes simétricas associadas ao grafo G. Denotaremos por Spec(A) o multiconjunto
dos autovalores da matriz A. Definimos a multiplicidade máxima de um grafo G como

M(G) := max{mA(λ) : A ∈ S(G), λ ∈ Spec(A)}, (1)

onde mA(λ) denota a multiplicidade de λ como autovalor da matriz A. Este parâmetro está
associado a uma classe de problemas em Teoria Matricial Combinatória, denominada Problema
Inverso de Autovalor para Grafos (ou IEP-G, do inglês Inverse Eigenvalue Problem for Graphs),
que tem recebido atenção de pesquisadores (veja [1], por exemplo). Dado um grafo G, o objetivo é
determinar todos os possíveis espectros de uma matriz A ∈ S(G). Dentro da classe de problemas
inversos, há duas questões fundamentais: a Solubilidade e a Computabilidade. A primeira diz
respeito a determinar se existe uma matriz A ∈ S(G) que seja solução para determinado problema
inverso associado a G, enquanto a segunda destina-se a construir uma matriz A que seja uma
solução para tal problema.

Nosso interesse concentra-se no estudo do parâmetro M(G) quando G é uma árvore. Em [3] é
obtida uma relação entre a multiplicidade máxima de uma árvore T e seu número de cobertura por
caminhos, denotado por P (T ). O número de cobertura por caminhos de uma árvore T é o menor
número de caminhos disjuntos de T que cobrem todos os vértices de T . Por [3], temos que:

M(T ) = P (T ). (2)

Neste trabalho, vamos apresentar um método para construir matrizes simétricas de árvores com
pelo menos um autovalor λ ∈ R de multiplicidade máxima. Para isso, faremos uso de um algoritmo
apresentado em [2], que age sobre uma árvore T com pesos, onde esses pesos estão associados às
entradas de uma matriz A ∈ S(T ).

Utilizando o algoritmo de [2] e uma cobertura mínima por caminhos de uma árvore, fomos
capazes de construir uma matriz A ∈ S(T ) com pelo menos um autovalor λ ∈ Spec(A) tal que
mA(λ) = M(T ). Além disso, nossa construção permite escolher λ com essa propriedade como qual-
quer número real. A Figura 1 mostra uma árvore T com pesos, com o autovalor 1, multiplicidade
3 = P (T ) e sua cobertura mínima por caminhos em destaque. O peso em cada aresta {vi, vj} re-
presenta a entrada aij da matriz A ∈ S(T ), enquanto o peso no vértice vi indica a entrada diagonal
aii de A. Observamos que as arestas com peso 1 na Figura 1 podem ter valores arbitrários como
peso, sem interferir na multiplicidade máxima do autovalor 1, os quais foram escolhidos iguais a 1
por simplicidade.
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Figura 1: Árvore T com mA(1) = 3 = P (T ). Fonte: Dos autores
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