

Finding Problems with Potential Quantum Supremacy using Graphs.

Rodney F. Franco¹

Universidad Nacional de Asunción, ASU

Sebastián A. Grillo²

Universidad Nacional de Asunción, Universidad Autónoma de Asunción, ASU

The main motivation for developing quantum algorithms is their advantage over classical counterparts. In a query complexity model we wish to compute a boolean function $f : S \rightarrow T$, where $S \subseteq \Sigma^n$ and T is a finite set [2]. It is possible to discover new problems with quantum advantage searching for second-degree linear polynomials, bounded between 0 and 1, which have a high L_1 norm [3]. This situation can be represented by defining an optimization problem, where L_1 is maximized for a proposed formulation of single-query quantum algorithms (which we denote as **WDG**). In this sense, in Theorem 1 an iterative method was presented, which produces a sequence of algorithms with increasing spectral norm L_1 from algorithms with spectral norm L_1 greater than 1. These contributions are detailed in the following paragraphs.

We say that a polynomial p approximates a function f with error bounded by ϵ , if $|p(x) - f(x)| < \epsilon$ for all x in the domain of f . Furthermore, we know that if there exist a $\epsilon < \frac{1}{2}$ and a $\epsilon' < \frac{1}{2}$, such that a partial boolean function f can be approximated by a *degree* – 2 polynomial with error bounded by ϵ if and only if f is computable by a 1–query quantum algorithm with error bounded by ϵ' [1].

For each $b \in \{0, 1\}^n$, we can define $\chi_b : \{1, -1\}^n \rightarrow \{-1, 1\}$ such that $\chi_b(x) = \prod_i b_i x_i$. This family of functions is an orthonormal basis of the function space $f : \{1, -1\}^n \rightarrow \mathbb{R}$ [4].

Given $p : \{1, -1\}^n \rightarrow [0, 1]$ a multilinear polynomial of degree at most two, then p has a unique representation

$$p = \sum_{b \in \{0, 1\}^n} \alpha_b \chi_b, \quad (1)$$

such that $|b| \leq 2$.

Given this, we define a graph with no multiple edges $G(V, E)$, where V and E are the sets of vertices and edges respectively and denote $\omega : E \rightarrow \mathbb{R}$ and $x \in \{1, -1\}^{n+1}$ (*considering the ancilla bit* $x_0 = 1$), we call $D = (G, \omega)$ Weighted dynamical graph (**WDG**) and define

$$g_D(x) = \sum_{e \in E} s(e, x) \omega(e), \quad (2)$$

the value of D over x , where if $e = (v_i, v_j)$, then $s(e, x) = x_i x_j$ and if $e = (v_i)$, then $s(e, x) = x_0 x_i$. And associated to D we define a $(n+1) \times (n+1)$ real matrix M^D such that: (i) if $i = 0$ and $i \neq j$, then $M_{i,j}^D = \frac{1}{2}\omega(\{j\})$, (ii) if $j = 0$ and $i \neq j$, then $M_{i,j}^D = \frac{1}{2}\omega(\{i\})$, (iii) if $i = j$, then $M_{i,j}^D = 0$, and (iv) if $i, j > 0$, then $M_{i,j}^D = M_{j,i}^D = \frac{1}{2}\omega(\{i, j\})$. Where

$$g_D(x) = x M^D x^t. \quad (3)$$

¹rfrancot@pol.una.py

²sgrillo@uaa.edu.py

The optimization problem we discussed earlier is defined here as follows:

Definition 1. Let f be a function such that $f : S \rightarrow [0, 1]$ and $S \subset \{1, -1\}^n$. Considering a **WDG** $D = (G, \omega)$ and given some $\epsilon > 0$: Find C and ω that maximize

$$\sum_{e \in E} |\omega(e)|. \quad (4)$$

subject to: (i) $|g_D(x) - f(x) + C| < \epsilon$ for each $x \in S$, and (ii) $\delta(D) = 1$. Where

$$\delta(D) = \max_{x \in \{-1, 1\}^n} g_D(x) - \min_{x \in \{-1, 1\}^n} g_D(x). \quad (5)$$

Where the equation 4 is the norm L_1 in the **WDG**. Now, consider the following terms:

- D and D' be WGDs such that $f(x) = (xM^D x^t + K)$ and $f'(y) = (yM^{D'} y^t + K')$ for $K, K' \in \mathbb{R}$, $S \subset \{1, -1\}^n$ and $T \subset \{1, -1\}^m$, where $f : S \rightarrow [0, 1]$ and $f' : T \rightarrow [0, 1]$ respectively.
- Denote $S^+ = \{x \in S : f(x) = 1\}$, $S^- = \{x \in S : f(x) = 0\}$, $T^+ = \{y \in T : f'(y) = 1\}$ and $T^- = \{y \in T : f'(y) = 0\}$.

if $L(f)$ be the fourier L_1 norm of f over its descomposition on functions χ_b , we state the following theorem

Theorem 1. There is a **WDG** D'' such that i) $L(g_{D''}) = (L(g_D) + |K|)(L(g_{D'}) + |K'|) - |KK'|$ and ii) $g_{D''}(x) = f''(x) + K''$ for $x \in ((S^+ \otimes T^+) \cup (S^- \otimes T^-) \cup (S^+ \otimes T^-) \cup (S^- \otimes T^+))$ and some $K'' \in \mathbb{R}$. Where $f'' : \{1, -1\}^{nm} \rightarrow [0, 1]$ satisfies (a) $f''(\omega) = 1$ if $\omega \in (S^+ \otimes T^+)$, and (b) $f''(\omega) = 0$ if $\omega \in ((S^+ \otimes T^-) \cup (S^- \otimes T^+) \cup (S^- \otimes T^-))$.

Here we show a relatively simple framework for problem search where single-query quantum algorithms can have potential advantage over classical decision trees. A possible strategy for developing quantum algorithms is to first solve the optimization problem using generic optimization methods, in order to generalize the algorithm through a sequence of **WGDs** obtained by applying the Theorem 1.

Acknowledgments

This work was supported by the CONACYT, Paraguay, under Grant PINV01-397. The authors of this work are part of the RIPAISC network (525RT0174) funded by the CYTED.

References

- [1] S. Aaronson, A. Ambainis, J. Iraids, M. Kokainis, and J. Smotrovs. “Polynomials, quantum query complexity, and Grothendieck’s inequality”. In: **arXiv preprint arXiv:1511.08682** (2015).
- [2] H. Barnum, M. Saks, and M. Szegedy. “Quantum query complexity and semi-definite programming”. In: **18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings**. IEEE. 2003, pp. 179–193. DOI: 10.1109/CCC.2003.1214419.
- [3] S. Alberto Grillo and F. de Lima Marquezino. “Fourier 1-norm and quantum speed-up”. In: **Quantum Information Processing** 18.4 (2019), p. 99. DOI: <https://doi.org/10.1007/s11128-019-2208-7>.
- [4] R. O’Donnell. **Analysis of boolean functions**. Cambridge University Press, 2014. DOI: <https://doi.org/10.1017/CBO9781139814782>.