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The main motivation for developing quantum algorithms is their advantage over classical coun-
terparts. In a query complexity model we wish to compute a boolean function f : S → T , where
S ⊆ Σnand T is a finite set [2]. It is possible to discover new problems with quantum advantage
searching for second-degree linear polynomials, bounded between 0 and 1, which have a high L1

norm [3]. This situation can be represented by defining an optimization problem, where L1 is
maximized for a proposed formulation of single-query quantum algorithms (which we denote as
WDG). In this sense, in Theorem 1 an iterative method was presented, which produces a sequence
of algorithms with increasing spectral normal L1 from algorithms with spectral norm L1 greater
than 1. These contributions are detailed in the following paragraphs.

We say that a polynomial p approximates a function f with error bounded by ϵ, if |p(x)−f(x)| <
ϵ for all x in the domain of f . Furthermore, we know that if there exist a ϵ < 1

2 and a ϵ′ < 1
2 ,

such that a partial boolean function f can be approximated by a degree− 2 polynomial with error
bounded by ϵ if and only if f is computable by a 1−query quantum algorithm with error bounded
by ϵ′ [1].

For each b ∈ {0, 1}n, we can define χb : {1,−1}n → {−1, 1} such that χb(x) =
∏

i bixi. This
family of functions is an orthonormal basis of the function space f : {1,−1} → R [4].

Given p : {1,−1}n → [0, 1] a multilinear polynomial of degree at most two, then p has a unique
representation

p =
∑

b∈{0,1}n

αbχb, (1)

such that |b| ≤ 2.
Given this, we define a graph with no multiple edges G(V,E), where V and E are the sets of

vertices and edges respectively and denote ω : E → R and x ∈ {1,−1}n+1 (considering the ancilla
bit x0 = 1), we call D = (G,ω) Weighted dynamical graph (WDG) and define

gD(x) =
∑
e∈E

s(e, x)ω(e), (2)

the value of D over x, where if e = (vi, vj), then s(e, x) = xixj and if e = (vi), then s(e, x) = x0xi.
And associated to D we define a (n+1)× (n+1) real matrix MD such that: (i) if i = 0 and i ̸= j,
then MD

i,j = 1
2ω({j}), (ii) if j = 0 and i ̸= j, then MD

i,j = 1
2ω({i}), (iii) if i = j, then MD

i,j = 0,
and (iv) if i, j > 0, then MD

i,j = MD
j,i =

1
2ω({i, j}). Where

gD(x) = xMDxt. (3)
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The optimization problem we discussed earlier is defined here as follows:

Definition 1. Let f be a function such that f : S → [0, 1] and S ⊂ {1,−1}n. Considering a
WDG D = (G,ω) and given some ϵ > 0: Find C and ω that maximize∑

e∈E

|ω(e)|. (4)

subject to: (i) |gD(x)− f(x) + C| < ϵ for each x ∈ S, and (ii) δ(D) = 1. Where

δ(D) = max
x∈{−1,1}n

gD(x)− min
x∈{−1,1}n

gD(x). (5)

Where the equation 4 is the norm L1 in the WDG. Now, consider the following terms:

• D and D′ be WGDs such that f(x) = (xMDxt+K) and f ′(y) = (yMD′
yt+K ′) for K,K ′ ∈ R,

S ⊂ {1,−1}n and T ⊂ {1,−1}m, where f : S → [0, 1] and f ′ : T → [0, 1] respectively.

• Denote S+ = {x ∈ S : f(x) = 1}, S− = {x ∈ S : f(x) = 0}, T+ = {y ∈ T : f ′(y) = 1} and
T− = {y ∈ T : f ′(y) = 0}.

if L(f) be the fourier L1 norm of f over its descomposition on functions χb, we state the following
theorem

Theorem 1. There is a WDG D′′ such that i) L(gD′′) = (L(gD) + |K|)(L(gD′) + |K ′|)− |KK ′|
and ii) gD′′(x) = f ′′(x) + K ′′ for x ∈ ((S+ ⊗ T+) ∪ (S− ⊗ T−) ∪ (S+ ⊗ T−) ∪ (S− ⊗ T+)) and
some K ′′ ∈ R. Where f ′′ : {1,−1}nm → [0, 1] satisfies (a) f ′′(ω) = 1 if ω ∈ (S+ ⊗ T+), and (b)
f ′′(ω) = 0 if ω ∈ ((S+ ⊗ T−) ∪ (S− ⊗ T+) ∪ (S− ⊗ T−)).

Here we show a relatively simple framework for problem search where single-query quantum
algorithms can have potential advantage over classical decision trees. A possible strategy for
developing quantum algorithms is to first solve the optimization problem using generic optimization
methods, in order to generalize the algorithm through a sequence of WGDs obtained by applying
the Theorem 1.
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