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The main motivation for developing quantum algorithms is their advantage over classical coun-
terparts. In a query complexity model we wish to compute a boolean function f : S — T, where
S C ¥"and T is a finite set [2]. It is possible to discover new problems with quantum advantage
searching for second-degree linear polynomials, bounded between 0 and 1, which have a high L
norm [3]. This situation can be represented by defining an optimization problem, where L; is
maximized for a proposed formulation of single-query quantum algorithms (which we denote as
WDG). In this sense, in Theorem 1 an iterative method was presented, which produces a sequence
of algorithms with increasing spectral normal L; from algorithms with spectral norm L, greater
than 1. These contributions are detailed in the following paragraphs.

We say that a polynomial p approximates a function f with error bounded by ¢, if |p(z)— f(z)] <
€ for all z in the domain of f. Furthermore, we know that if there exist a € < % and a € < %,
such that a partial boolean function f can be approximated by a degree — 2 polynomial with error
bounded by € if and only if f is computable by a 1—query quantum algorithm with error bounded
by € [1].

For each b € {0,1}", we can define x; : {1,-1}" — {—1,1} such that x,(z) = [], bjx;. This
family of functions is an orthonormal basis of the function space f: {1,—1} — R [4].

Given p: {1,—1}" — [0, 1] a multilinear polynomial of degree at most two, then p has a unique
representation

p= Z ApXbs (1)

such that |b|] < 2.

Given this, we define a graph with no multiple edges G(V, E), where V and E are the sets of
vertices and edges respectively and denote w : E — R and x € {1, —1}"*! (considering the ancilla
bit o = 1), we call D = (G,w) Weighted dynamical graph (WDG) and define

gp() = se,z)w(e), (2)
ecE

the value of D over z, where if e = (v;,v;), then s(e,z) = x;z; and if e = (v;), then s(e, ) = zoz;.
And associated to D we define a (n+1) x (n+ 1) real matrix M such that: (i) if i = 0 and i # j,
then M2 = Jw({j}), (i) if j = 0 and i # j, then M, = Jw({i}), (iii) if i = j, then M} =0,
and (iv) if i,j > 0, then MP = ME, = Jw({i,j}). Where

gp(z) = aMPzt, (3)
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The optimization problem we discussed earlier is defined here as follows:

Definition 1. Let f be a function such that f : S — [0,1] and S C {1,—1}". Considering a
WDG D = (G,w) and given some € > 0: Find C and w that mazimize

> lw(e)l. (4)

ecE
subject to: (i) |gp(z) — f(x) + C| < € for each x € S, and (i) 6(D) = 1. Where

§(D) = — mi . 5
(D) we{rga}ﬁ}w,gz)(r) we{n_nlr}l}ngz)(x) (5)

Where the equation 4 is the norm L; in the WDG. Now, consider the following terms:

e Dand D' be WGDs such that f(z) = (tMPz'+K) and f'(y) = (yMP y'+K') for K, K’ € R,
Sc{l,-1}* and T C {1,-1}™, where f: S — [0,1] and f': T — [0, 1] respectively.

e Denote ST ={zeS: flx)=1}, S ={zeS: f(x)=0}, Tt ={yeT: f(y) =1} and
T-={yeT:f'(y) =0}

if L(f) be the fourier L; norm of f over its descomposition on functions x3, we state the following
theorem

Theorem 1. There is a WDG D" such that i) L(gp») = (L(g9p) + |K|)(L(g9p’) + |K'|) — | KK
and i) gpr(z) = f"(x) + K" forxz € (ST@TH)U(S™ @TH)USTRT)U(S™ ®@TT)) and
some K" € R. Where f" : {1,—-1}"™ — [0,1] satisfies (a) f"(w) =1 ifw € (ST @TT), and (b)
f(w)y=0ifwe (STRTHUS™ @THU(S™ ®@T7)).

Here we show a relatively simple framework for problem search where single-query quantum
algorithms can have potential advantage over classical decision trees. A possible strategy for
developing quantum algorithms is to first solve the optimization problem using generic optimization
methods, in order to generalize the algorithm through a sequence of WGDs obtained by applying
the Theorem 1.
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