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Quantum machine learning (QML) uses quantum computing to improve the efficiency of learn-
ing. A key approach is quantum memory, which enables the coherent storage and reuse of quantum
states during computation. Theoretically, quantum memory can exponentially reduce data re-
quirements by preserving correlations between training instances [1, 3], but its empirical validation
remains limited. This work examines its impact on a quantum support vector machine (QSVM),
comparing its performance with classical and quantum baselines.

Quantum kernels are fundamental in QML, extending classical kernel methods into higher-
dimensional quantum feature spaces. At their core is the quantum feature map, which implements
the kernel trick in a quantum setting. A quantum feature map is a function ϕ : X → H that
embeds a classical data point x into a quantum state. The quantum kernel function K(xi,xj)
measures similarity by computing the fidelity between feature states |ϕ(xi)⟩ and |ϕ(xj)⟩:

K(xi,xj) =
∣∣⟨ϕ(xi)|ϕ(xj)⟩

∣∣2. (1)

These quantum states are generated via a parameterized unitary transformation Uϕ(x) applied to
an initial reference state, that is, |ϕ(xi)⟩ = Uϕ(xi)|0⟩. A widely used quantum feature map in QSVM
applications is the ZZFeatureMap, which introduces entanglement to encode classical inputs into
quantum states [2].

To incorporate quantum memory, we modify the quantum feature map to allow state reuse
across training instances. The quantum memory kernel is defined as:

Kmemory(xi,xj) = |⟨ϕ(xi))|Umemory|ϕ(xj))⟩|2, (2)

where Umemory is a quantum operator designed to retain correlations between previous quantum
states. Inspired by [3], in our implementation, Umemory consists of an additional layer of parame-
terized RY rotations:

Umemory =
∏
q

RY (xqπ), (3)

which is applied both before and after a sequence of entangling operations. The parameter xq

corresponds to the q-th component of the classical input feature vector x, which is mapped onto
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the quantum state space. Each qubit is rotated proportionally to its respective input feature,
ensuring that the encoding preserves class-dependent correlations. Specifically, the transformation
applied to qubit q is given by:

RY (xqπ)|0⟩ = cos
(xqπ

2

)
|0⟩+ sin

(xqπ

2

)
|1⟩. (4)

This guarantees that different components of the input data influence different qubits in a struc-
tured manner, while the memory mechanism ensures that previously processed quantum states
remain partially correlated with subsequent states.

To empirically evaluate the effect of quantum memory, we trained three models on datasets of
varying sizes (100, 300, and 500 samples). The performance comparison is shown below:

Table 1: Comparison of classification accuracy across dataset sizes.
Dataset Size Classical SVM (RBF) QSVM (ZZFeatureMap) QSVM (Quantum Memory)

100 60.0% 40.0% 63.3%
300 47.8% 51.1% 53.3%
500 45.3% 48.0% 51.3%

Despite promising results, practical implementation challenges remain. Since this study relies
on noiseless simulations, real-world performance may be overestimated, as decoherence and gate
errors can impact quantum memory reliability [5]. However, the findings suggest that quantum
memory may help mitigate the degradation of accuracy as data complexity grows, indicating its
potential as a resource for QML.

Validating these results on real quantum hardware is an important step toward assessing the
feasibility of quantum memory in practical applications. While synthetic datasets provide useful
insights, testing in domains where quantum correlations naturally arise, such as quantum chem-
istry [4] or high-energy physics, will further clarify its advantages. Additionally, refining quantum
feature maps and exploring alternative kernels could improve the scalability and robustness of
memory-assisted QML models.
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