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Resumo. Este trabalho investiga a resposta de um sistema determinístico, linear e invariante no
tempo do tipo massa-mola-amortecedor submetido a um carregamento modelado como um processo
estocástico estacionário. O objetivo é verificar, por meio de simulações numéricas, se a resposta
do sistema apresenta propriedades de estacionariedade no regime permanente. As respostas foram
obtidas por meio do método de Monte Carlo e analisadas utilizando duas métricas: a distância
de engenharia e a distância de Wasserstein. Enquanto a distância de engenharia avalia apenas a
proximidade entre médias, a distância de Wasserstein quantifica a divergência entre distribuições de
probabilidade. Dessa forma, a métrica de Wasserstein é empregada para comparar as aproximações
numéricas para as distribuições de probabilidade em diferentes seções do processo estocástico que
caracteriza a resposta do sistema, permitindo investigar sua aproximação a um processo fracamente
ou estritamente estacionário. Além disso, como a análise exige a comparação de distribuições em
espaços de alta dimensão, a distância de Wasserstein mostra-se uma ferramenta mais adequada do
que a inspeção visual de histogramas, que se torna imprecisa e inviável nesses casos.

Palavras-chave. Processos Estocásticos Estacionários, Vibrações Aleatórias, Monte Carlo, Mé-
trica de Engenharia, Métrica de Wasserstein.

1 Introdução
Sistemas mecânicos sujeitos a carregamentos aleatórios são comuns em diversas aplicações, o que

motiva este trabalho. Exemplos típicos incluem pontes expostas à ação do vento, às ondas do mar
sobre os pilares que as sustentam e ao tráfego de veículos, bem como as pás de turbinas eólicas
submetidas ao vento e um prédio durante um terremoto. Nesses casos, as vibrações aleatórias
geradas pelas forças externas criam respostas estocásticas nos sistemas. Este trabalho tem como
objetivo analisar a resposta de um sistema determinístico, linear e invariante no tempo com um grau
de liberdade do tipo massa-mola-amortecedor, ilustrado na Figura 1, submetido a um carregamento
modelado como um processo estocástico estacionário.

Figura 1: Sistema massa-mola-amortecedor analisado. Fonte: Autoria Própria.
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Os parâmetros do sistema são: massa m = 1 kg, constante de amortecimento do amortecedor
c = 0, 1 Ns/m, rigidez da mola k = 1 N/m. A posição da massa é parametrizada por X e considera-
se condições iniciais de posição e velocidade nulas. A amplitude Fa e frequência Fω do carregamento
estocástico F são modeladas como variáveis aleatórias independentes e seguem distribuição normal
N (1, 1/3). A equação que rege a dinâmica do sistema é: Ẍ (t) + 0, 1Ẋ (t) + X (t) = Fa cos(Fωt).

Dado que o carregamento F é aleatório, a resposta do sistema também é modelada como
um processo estocástico, X , e o estudo busca investigar se essa resposta exibe características
de estacionariedade no regime permanente [1, 5]. Seja T um intervalo de análise, um processo
estocástico X é uma função tal que ∀t ∈ T , existe uma variável aleatória X (t) definida em um
espaço de probabilidade (Ω,F, P r). Um processo é dito estritamente estacionário se ∀m ∈ N e
todo (t1, ..., tm) ∈ Tm, a distribuição de probabilidade conjunta de (X (t1), ...,X (tm)) é idêntica
à distribuição de probabilidade conjunta de (X (t1 + ∆t), ...,X (tm + ∆t)) ∀∆t ∈ R, e fracamente
estacionário se a igualdade ocorrer apenas para m ∈ {1, 2}. O objetivo deste trabalho é verificar
se a resposta do sistema exibe características de estacionariedade no regime permanente, ou seja,
se as definições mencionadas anteriormente se aplicam. No entanto, a análise será realizada por
meio de simulações numéricas, utilizando o método de Monte Carlo [5, 7]. Nesse método, são
geradas diversas realizações do carregamento e, para cada uma delas, calcula-se uma realização da
resposta do sistema por meio de uma expressão algébrica [4, 5], em um intervalo de análise. A
partir das realizações da resposta, constrói-se um modelo estatístico para a resposta do sistema,
calculando, por exemplo, médias amostrais ao longo do tempo e histogramas normalizados para
diferentes seções do processo estocástico. O número de realizações é determinado por uma análise
de convergência: aumenta-se o número de realizações até que as estatísticas amostrais calculadas
se estabilizem dentro de uma tolerância previamente definida [5]. Como é utilizado o método de
Monte Carlo, não há distribuição de probabilidade conjunta de (X (t1), . . . ,X (tm)) disponível para
comparar com a distribuição de probabilidade conjunta de (X (t1 +∆t), . . . ,X (tm +∆t)). Em vez
disso, há apenas histogramas normalizados, o que gera duas dificuldades. A primeira é que, para
realizar as comparações, seria necessário comparar histogramas, o que, a princípio, é uma tarefa de
inspeção visual imprecisa. A segunda dificuldade é que a visualização de histogramas é limitada a
dimensões m = 1 e m = 2, ou seja, é possível, no máximo, visualizar o histograma conjunto de duas
seções do processo estocástico. Para ilustrar, a Figura 2 apresenta os histogramas normalizados
univariados para diferentes seções de X , bem como os histogramas bivariados, ou seja, o conjunto
de duas seções de X . Os histogramas foram construídos a partir de 300 mil realizações da resposta
do sistema, sendo esse número de realizações definido por meio de uma análise de convergência. O
intervalo de análise adotado foi de [0, 300] s.

Para superar as limitações das comparações visuais de histogramas e a restrição à visualização
de histogramas bivariados, serão utilizadas métricas para comparar as distribuições de probabi-
lidade conjuntas de até cinco seções do processo estocástico que descreve a resposta do sistema.
Serão empregadas duas métricas: a distância de engenharia e a distância de Wasserstein, conforme
descrito na Seção 2.

2 Métricas de Engenharia e de Wasserstein

Sejam X = X (t1) e Y = X (t2) duas variáveis aleatórias provenientes de um processo estocástico
X . Suas distribuições de probabilidade são pX e pY respectivamente. A distância de engenharia
entre elas é dada pela equação (1) [6]:

E(pX , pY ) = |E[X]− E[Y ]| =
∣∣∣∣∫

R
x(pX(x)− pY (x))dx

∣∣∣∣ , (1)
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Figura 2: Histogramas normalizados univariados e bivariados. Fonte: Autoria Própria.

caso X e Y tenham média. Quando as densidades de probabilidade de X e Y são desconhecidas,
mas se tem n realizações dessas variáveis aleatórias, dadas por x(1), . . . , x(n) e y(1), . . . , y(n), é
possível calcular uma aproximação para a distância de engenharia X1 e X2 pela equação (2):

Ê(pX , pY ) =

∣∣∣∣∣ 1n
n∑

i=1

x(i) − 1

n

n∑
i=1

y(i)

∣∣∣∣∣ . (2)

Sejam X = X (t1) e Y = X (t2) duas variáveis aleatórias contínuas com densidades de probabili-
dade pX e pY e distribuições de probabilidade cumulativas PX e PY respectivamente. A distância
de Wasserstein de ordem q Wq entre elas é dada pela equação (3) [3]:

Wq(pX , pY ) = (inf E[|X − Y |q])1/q =

(∫
R
|PX(x)− PY (x)|qdx

)1/q

. (3)

De forma análoga à distância de engenharia, é possível calcular uma aproximação para a distân-
cia Wasserstein quando as densidades de probabilidade de X1 e X2 são desconhecidas, mas há
realizações dessas variáveis aleatórias. Sejam x

(1)
1 , . . . , x

(n)
1 e x

(1)
2 , . . . , x

(n)
2 realizações de X1 e X2

ordenadas de forma crescente tal que x
(1)
1 ≤ . . . ≤ x

(n)
1 e x

(1)
2 ≤ . . . ≤ x

(n)
2 . Uma aproximação para

a distância de Wasserstein X e Y pode ser calculada pela equação (4):

Ŵq(pX , pY ) =

(
1

n

n∑
i=1

∣∣∣x(i) − y(i)
∣∣∣q)1/q

. (4)

A distância de Wasserstein pode também ser definida para vetores aleatórios com dimensão m > 1.
Sejam X = [X (t1),X (t2), · · · ,X (tm)]T e Y = [X (tm+1), · · · ,X (t2m)]T dois vetores aleatórios em
Rm contendo diferentes seções do processo estocástico X e distribuições de probabilidade pX e pY
respectivamente. A distância de Wasserstein entre pX e pY é dada pela equação (5) [2]:

Wq,m(pX, pY) = inf
π∈Γ(pX,pY)

(∫
Rm

|x− y|qdπ(x,y)
)1/q

, (5)
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onde Γ(pX, pY) é o conjunto de medidas de probabilidade (também chamadas de planos de trans-
porte) em Rm × Rm com respectivas distribuições marginais pX e pY.

3 Resultados das Simulações Numéricas
Com as realizações do processo estocástico X obtidas por meio de simulações de Monte Carlo,

foram calculadas aproximações para as métricas de engenharia e de Wasserstein entre as seções
X (t) e X (t+∆t), considerando diferentes combinações de instantes t e intervalos ∆t. As métricas
também foram avaliadas para distribuições de probabilidade conjuntas de até cinco seções da
resposta do sistema.

Foram também analisados os efeitos de diferentes fatores nas aproximações das métricas, in-
cluindo a influência do coeficiente de amortecimento do sistema, a ordem q da distância de Was-
serstein e a influência do número de realizações utilizadas nas simulações de Monte Carlo. Caso
não sejam mencionados explicitamente, os valores dos parâmetros do sistema, condições iniciais,
dados do carregamento e número de realizações seguem as definições apresentadas na Seção 1.

3.1 Distâncias de Engenharia: Alterando Fator de Amortecimento

Figura 3: Distâncias de engenharia para diferentes ∆t e fatores de amortecimento ζ. Fonte: Autoria
Própria.

A Figura 3 apresenta as aproximações para as distâncias de engenharia entre as seções X (t) e
X (t+∆t), calculadas para diferentes valores do fator de amortecimento ζ = c

2
√
mk

, considerando
intervalos fixos de ∆t. O eixo horizontal representa o tempo t (em segundos), enquanto o eixo
vertical, em escala logarítmica, mostra os valores das distâncias de engenharia. É importante
destacar que, para cada ponto do gráfico, a posição no eixo t indica o instante inicial da seção
X (t), enquanto X (t+∆t) é definida com base no ∆t fixado.

Cada curva no gráfico corresponde a um valor específico de ζ, permitindo observar como o
amortecimento afeta as aproximações das distâncias ao longo do tempo. O comportamento das
curvas evidencia que maiores valores de amortecimento resultam em uma convergência mais rápida
das distâncias para valores próximos de zero, indicando menor variação entre as distribuições das
seções comparadas. No entanto, a estabilização das distâncias de engenharia amostrais não é sufi-
ciente para afirmar que a resposta do sistema converge para um processo estocástico estacionário,
pois a estacionariedade exige que as distribuições de probabilidade conjuntas das seções do pro-
cesso permaneçam invariantes no tempo, e não apenas a estabilidade dos momentos de primeira
ordem.
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3.2 Distâncias de Wasserstein
Aplicando a equação (4), foram calculadas as distâncias de Wasserstein entre as distribuições

das posições para diferentes intervalos, alterando determinados parâmetros. A dimensão e a ordem
padrão são m = 1 e q = 2 respectivamente.

3.2.1 Alterando Tamanho da Amostra

Figura 4: Distâncias de Wasserstein para diferentes ∆t e tamanhos de amostra. Considera-se q = 2.
Fonte: Autoria Própria.

A Figura 4 apresenta as aproximações calculadas para as distâncias de Wasserstein entre as
seções X (t) e X (t+∆t), calculadas para diferentes número de realizações utilizadas nas simulações
de Monte Carlo, considerando intervalos fixos de ∆t. Destaca-se que, para cada ponto do gráfico,
a posição no eixo t indica o instante inicial da seção X (t), enquanto X (t+∆t) é definida com base
no ∆t fixado. Em todas as curvas da Figura 4 observa-se, apesar das oscilações, a diminuição das
distâncias com o passar do tempo, que ocorre mais rapidamente para amostras maiores.

3.2.2 Alterando Fator de Amortecimento

Figura 5: Distâncias de Wasserstein para diferentes ∆t e fatores de amortecimento ζ. Considera-se
q = 2. Fonte: Autoria Própria.

De forma análoga ao feito para a distância de engenharia, foi feita uma análise da influência
do fator de amortecimento ζ do sistema nas aproximações para as distâncias de Wasserstein entre
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as seções X (t) e X (t+∆t). Através dos resultados obtidos, mostrados na Figura 5, verifica-se que
quanto maior o amortecimento, mais rapidamente as distâncias de Wasserstein decaem, indicando
menor variação entre as distribuições das seções comparadas.

3.2.3 Alterando Ordem

Figura 6: Distâncias de Wasserstein para diferentes ∆t e ordens q. Fonte: Autoria Própria.

A Figura 6 apresenta as aproximações calculadas para as distâncias de Wasserstein entre as
seções X (t) e X (t+∆t), calculadas para diferentes ordens q e intervalos fixos de ∆t. Apesar das
oscilações, verifica-se que as distâncias decaem mais rapidamente para ordens q menores.

3.2.4 Alterando Dimensão

Figura 7: Distâncias de Wasserstein para diferentes ∆t e dimensões m. Considera-se q = 2. Fonte:
Autoria Própria.

A Figura 7 apresenta as aproximações calculadas das distâncias de Wasserstein entre as dis-
tribuições de probabilidade dos vetores aleatórios X e Y ∈ Rm. Esses vetores representam dis-
tribuições conjuntas de até cinco seções, com m ∈ {1, 2, 3, 4, 5}, referentes à resposta X para
diferentes ∆t. Para cada valor de ∆t, as seções são selecionadas uniformemente com um es-
paçamento de ∆t, resultando nas seguintes definições: X = [X (t1),X (t2), · · · ,X (tm)]T e Y =
[X (tm+1), · · · ,X (t2m)]T , com a condição de que tj = t1 + (j − 1)∆t para j = 1, . . . , 2m. Para
cada ponto do gráfico, a posição no eixo t indica o instante inicial selecionado para a seção X (t1).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0247 010247-6 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0247


7

Verifica-se que as distâncias convergem para qualquer dimensão, sendo que para m = 1 a conver-
gência é a mais lenta.

4 Conclusões
Este trabalho investigou a resposta de um sistema determinístico massa-mola-amortecedor sub-

metido a um carregamento descrito por um processo estocástico estacionário. O principal objetivo
foi utilizar aproximações numéricas para as distâncias de engenharia e de Wasserstein a fim de
verificar se a resposta do sistema apresentaria características de estacionariedade no regime per-
manente. A distância de engenharia, focada na proximidade das médias das distribuições, foi útil
para uma avaliação preliminar, enquanto a distância de Wasserstein ofereceu uma comparação mais
robusta, permitindo quantificar a divergência entre as aproximações obtidas para as distribuições
de probabilidade em diferentes seções do processo estocástico.

Além disso, devido ao uso do método de Monte Carlo, a distribuição de probabilidade conjunta
de diferentes seções da resposta do sistema não era conhecida, havendo apenas histogramas. Isso
gerou desafios para as comparações, uma vez que comparar histogramas é, a princípio, uma tarefa
imprecisa e de inspeção visual. Adicionalmente, a visualização de histogramas é limitada a no
máximo duas seções do processo estocástico simultaneamente. Nesse contexto, o uso da distância
de Wasserstein mostrou-se fundamental para superar essas limitações. Utilizou-se essa métrica para
comparar as distribuições de probabilidade conjuntas de até cinco seções do processo estocástico.

Por fim, a metodologia desenvolvida neste trabalho pode ser adaptada para a análise de outros
sistemas mecânicos, incluindo sistemas não lineares. Sua utilidade decorre da ausência de resultados
teóricos gerais para a caracterização da estacionariedade em sistemas desse tipo.
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