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Resumo. Este trabalho investiga a resposta de um sistema deterministico, linear e invariante no
tempo do tipo massa-mola-amortecedor submetido a um carregamento modelado como um processo
estocastico estacionario. O objetivo é verificar, por meio de simulagdes numéricas, se a resposta
do sistema apresenta propriedades de estacionariedade no regime permanente. As respostas foram
obtidas por meio do método de Monte Carlo e analisadas utilizando duas métricas: a distancia
de engenharia e a distadncia de Wasserstein. Enquanto a distancia de engenharia avalia apenas a
proximidade entre médias, a distancia de Wasserstein quantifica a divergéncia entre distribui¢des de
probabilidade. Dessa forma, a métrica de Wasserstein é empregada para comparar as aproximagoes
numéricas para as distribuicbes de probabilidade em diferentes se¢des do processo estocéastico que
caracteriza a resposta do sistema, permitindo investigar sua aproximagao a um processo fracamente
ou estritamente estacionario. Além disso, como a anélise exige a comparagio de distribuigbes em
espagos de alta dimenséao, a distancia de Wasserstein mostra-se uma ferramenta mais adequada do
que a inspecao visual de histogramas, que se torna imprecisa e inviavel nesses casos.

Palavras-chave. Processos Estocasticos Estacionarios, Vibragoes Aleatorias, Monte Carlo, Mé-
trica de Engenharia, Métrica de Wasserstein.

1 Introducao

Sistemas mecanicos sujeitos a carregamentos aleatorios sao comuns em diversas aplicagoes, o que
motiva este trabalho. Exemplos tipicos incluem pontes expostas a agao do vento, as ondas do mar
sobre os pilares que as sustentam e ao trafego de veiculos, bem como as péas de turbinas edlicas
submetidas ao vento e um prédio durante um terremoto. Nesses casos, as vibracoes aleatorias
geradas pelas forcas externas criam respostas estocésticas nos sistemas. Este trabalho tem como
objetivo analisar a resposta de um sistema deterministico, linear e invariante no tempo com um grau
de liberdade do tipo massa-mola-amortecedor, ilustrado na Figura 1, submetido a um carregamento
modelado como um processo estocastico estacionéario.
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Figura 1: Sistema massa-mola-amortecedor analisado. Fonte: Autoria Prépria.
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Os parametros do sistema sao: massa m = 1 kg, constante de amortecimento do amortecedor
¢ = 0,1 Ns/m, rigidez da mola k = 1 N/m. A posigao da massa é parametrizada por X e considera-
se condigoes iniciais de posicao e velocidade nulas. A amplitude F,, e frequéncia F,, do carregamento
estocastico F sao modeladas como variaveis aleatérias independentes e seguem distribuicao normal
N(1,1/3). A equacio que rege a dinamica do sistema é: X(t) +0,1X(t) + X (t) = F, cos(F,t).

Dado que o carregamento F é aleatério, a resposta do sistema também é modelada como
um processo estocéstico, X, e o estudo busca investigar se essa resposta exibe caracteristicas
de estacionariedade no regime permanente [1, 5]. Seja T um intervalo de anélise, um processo
estocastico X é uma fungao tal que Vt € T, existe uma variavel aleatoria X (t) definida em um
espago de probabilidade (Q2,F, Pr). Um processo é dito estritamente estacionario se Vm € N e
todo (t1,...,tm) € T™, a distribuigdo de probabilidade conjunta de (X (¢1),..., X(tm)) é idéntica
a distribuigdo de probabilidade conjunta de (X (t1 + At), ..., X (tm + At)) VAt € R, e fracamente
estacionario se a igualdade ocorrer apenas para m € {1,2}. O objetivo deste trabalho é verificar
se a resposta do sistema exibe caracteristicas de estacionariedade no regime permanente, ou seja,
se as definicoes mencionadas anteriormente se aplicam. No entanto, a analise seré realizada por
meio de simulagbes numéricas, utilizando o método de Monte Carlo [5, 7]. Nesse método, sao
geradas diversas realizagoes do carregamento e, para cada uma delas, calcula-se uma realizacao da
resposta do sistema por meio de uma expressao algébrica [4, 5], em um intervalo de anélise. A
partir das realizagoes da resposta, constroi-se um modelo estatistico para a resposta do sistema,
calculando, por exemplo, médias amostrais ao longo do tempo e histogramas normalizados para
diferentes se¢oes do processo estocéastico. O ntumero de realizagdes é determinado por uma anélise
de convergéncia: aumenta-se o numero de realizagoes até que as estatisticas amostrais calculadas
se estabilizem dentro de uma tolerancia previamente definida [5]. Como é utilizado o método de
Monte Carlo, ndo ha distribui¢ao de probabilidade conjunta de (X (¢1), ..., X (tm)) disponivel para
comparar com a distribuigdo de probabilidade conjunta de (X (t1 + At), ..., X (tm + At)). Em vez
disso, h& apenas histogramas normalizados, o que gera duas dificuldades. A primeira é que, para
realizar as comparacgoes, seria necessario comparar histogramas, o que, a principio, é uma tarefa de
inspecao visual imprecisa. A segunda dificuldade é que a visualizagao de histogramas é limitada a
dimensoes m = 1 e m = 2, ou seja, é possivel, no maximo, visualizar o histograma conjunto de duas
secoes do processo estocastico. Para ilustrar, a Figura 2 apresenta os histogramas normalizados
univariados para diferentes segoes de X', bem como os histogramas bivariados, ou seja, o conjunto
de duas segbes de X. Os histogramas foram construidos a partir de 300 mil realizages da resposta
do sistema, sendo esse nimero de realizagdes definido por meio de uma analise de convergéncia. O
intervalo de analise adotado foi de [0, 300] s.

Para superar as limitagoes das comparacoes visuais de histogramas e a restricao a visualizagao
de histogramas bivariados, serao utilizadas métricas para comparar as distribui¢coes de probabi-
lidade conjuntas de até cinco segoes do processo estocéstico que descreve a resposta do sistema.
Serao empregadas duas métricas: a distancia de engenharia e a distancia de Wasserstein, conforme
descrito na Secao 2.

2 Meétricas de Engenharia e de Wasserstein

Sejam X = X(t1) e Y = X(t2) duas variaveis aleatorias provenientes de um processo estocastico
X. Suas distribuigoes de probabilidade sao px e py respectivamente. A distancia de engenharia
entre elas é dada pela equagao (1) [6]:

E(px,py) = |EIX] — E[Y]| = ] [ atox() vtz M
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Figura 2: Histogramas normalizados univariados e bivariados. Fonte: Autoria Propria.

caso X e Y tenham média. Quando as densidades de probabilidade de X e Y sao desconhecidas,

mas se tem n realizacoes dessas variaveis aleatorias, dadas por (), ... z(™ e ¢y . ¢y ¢
possivel calcular uma aproximacao para a distancia de engenharia X} e X pela equagdo (2):
o 1o
Elpx, N @ _ = @ 92
o) = |5 30 = 05 )

Sejam X = X(t1) e Y = X(t2) duas variaveis aleatorias continuas com densidades de probabili-
dade px e py e distribuicoes de probabilidade cumulativas Px e Py respectivamente. A distancia
de Wasserstein de ordem ¢ W, entre elas é dada pela equagao (3) [3]:

1/q
Walpx.py) = (inf E[|X — Y]7)"/7 = ( [ 1Pt - Py(w)lqdw) | 3)

De forma anéloga a distancia de engenharia, é possivel calcular uma aproximagao para a distan-
cia Wasserstein quando as densidades de probabilidade de X} e X3 sao desconhecidas, mas ha
) 2™ e 2V 2{ realizacdes de X e X
1,2 5y, Ty coes de Xy e Xy

ordenadas de forma crescente tal que mgl) <...< x&") e xél) <...< xgn). Uma aproximagao para

a distancia de Wasserstein X e Y pode ser calculada pela equagao (4):

realizagoes dessas variaveis aleatorias. Sejam x

1/q
q

. 1 <& . _
Walpx,py) = | > ’ﬂ?(l) —y® (4)
1=1

A distancia de Wasserstein pode também ser definida para vetores aleatorios com dimensao m > 1.
Sejam X = [X(t1), X (t2), -, X(tm)]T e Y = [X(tmy1), -+, X (tam)]T dois vetores aleatérios em
R™ contendo diferentes segoes do processo estocastico X e distribuigoes de probabilidade px e py
respectivamente. A distancia de Wasserstein entre px e py ¢ dada pela equagao (5) [2]:

1/q
Wym(pxpy) = inf (/ |x—y|de<x,y>) , (5)

mel'(px,py)
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onde T'(px,py) € o conjunto de medidas de probabilidade (também chamadas de planos de trans-
porte) em R™ x R™ com respectivas distribui¢oes marginais px e py.

3 Resultados das Simulacoes Numéricas

Com as realizagoes do processo estocastico X' obtidas por meio de simulagoes de Monte Carlo,
foram calculadas aproximacoes para as métricas de engenharia e de Wasserstein entre as segoes
X(t) e X(t 4+ At), considerando diferentes combinages de instantes ¢ e intervalos At. As métricas
também foram avaliadas para distribuicoes de probabilidade conjuntas de até cinco segoes da
resposta do sistema.

Foram também analisados os efeitos de diferentes fatores nas aproximagoes das métricas, in-
cluindo a influéncia do coeficiente de amortecimento do sistema, a ordem ¢ da distancia de Was-
serstein e a influéncia do nimero de realiza¢oes utilizadas nas simulagoes de Monte Carlo. Caso
nao sejam mencionados explicitamente, os valores dos paradmetros do sistema, condigoes iniciais,
dados do carregamento e nimero de realizagoes seguem as defini¢oes apresentadas na Segao 1.

3.1 Distancias de Engenharia: Alterando Fator de Amortecimento
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Figura 3: Distancias de engenharia para diferentes At e fatores de amortecimento ¢. Fonte: Autoria
Propria.

A Figura 3 apresenta as aproximagoes para as distdncias de engenharia entre as segdes X'(t) e

X(t + At), calculadas para diferentes valores do fator de amortecimento ¢ = Nﬁ’ considerando

intervalos fixos de At. O eixo horizontal representa o tempo ¢ (em segundos), enquanto o eixo
vertical, em escala logaritmica, mostra os valores das distancias de engenharia. E importante
destacar que, para cada ponto do gréafico, a posicao no eixo t indica o instante inicial da segao
X (t), enquanto X (¢t + At) é definida com base no At fixado.

Cada curva no grafico corresponde a um valor especifico de {, permitindo observar como o
amortecimento afeta as aproximagoes das distancias ao longo do tempo. O comportamento das
curvas evidencia que maiores valores de amortecimento resultam em uma convergéncia mais rapida
das distancias para valores proximos de zero, indicando menor variacao entre as distribuigoes das
secoes comparadas. No entanto, a estabilizagao das distancias de engenharia amostrais nao é sufi-
ciente para afirmar que a resposta do sistema converge para um processo estocastico estacionério,
pois a estacionariedade exige que as distribuicoes de probabilidade conjuntas das se¢oes do pro-
cesso permanecam invariantes no tempo, e nao apenas a estabilidade dos momentos de primeira
ordem.
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3.2 Distancias de Wasserstein

Aplicando a equagédo (4), foram calculadas as distancias de Wasserstein entre as distribuigoes
das posigoes para diferentes intervalos, alterando determinados parametros. A dimensao e a ordem
padrao sao m = 1 e ¢ = 2 respectivamente.

3.2.1 Alterando Tamanho da Amostra
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Figura 4: Distancias de Wasserstein para diferentes At e tamanhos de amostra. Considera-se g = 2.
Fonte: Autoria Propria.

A Figura 4 apresenta as aproximagoes calculadas para as distancias de Wasserstein entre as
segoes X (t) e X (t+ At), calculadas para diferentes numero de realizagoes utilizadas nas simulagoes
de Monte Carlo, considerando intervalos fixos de At. Destaca-se que, para cada ponto do gréfico,
a posi¢ao no eixo t indica o instante inicial da segdo X (¢), enquanto X (¢ + At) é definida com base
no At fixado. Em todas as curvas da Figura 4 observa-se, apesar das oscilacgoes, a diminuicao das
distancias com o passar do tempo, que ocorre mais rapidamente para amostras maiores.

3.2.2 Alterando Fator de Amortecimento
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Figura 5: Distancias de Wasserstein para diferentes At e fatores de amortecimento ¢. Considera-se
q = 2. Fonte: Autoria Propria.

De forma analoga ao feito para a distdncia de engenharia, foi feita uma analise da influéncia
do fator de amortecimento ¢ do sistema nas aproximacoes para as distancias de Wasserstein entre
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as segoes X (t) e X(t+ At). Através dos resultados obtidos, mostrados na Figura 5, verifica-se que
quanto maior o amortecimento, mais rapidamente as distancias de Wasserstein decaem, indicando
menor variacao entre as distribuicoes das segoes comparadas.

3.2.3 Alterando Ordem
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Figura 6: Distancias de Wasserstein para diferentes At e ordens q. Fonte: Autoria Propria.

A Figura 6 apresenta as aproximagoes calculadas para as distdncias de Wasserstein entre as
segoes X (t) e X(t + At), calculadas para diferentes ordens ¢ e intervalos fixos de At. Apesar das
oscilagoes, verifica-se que as distAncias decaem mais rapidamente para ordens g menores.

3.2.4 Alterando Dimensao
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Figura 7: Distancias de Wasserstein para diferentes At e dimensées m. Considera-se ¢ = 2. Fonte:
Autoria Propria.

A Figura 7 apresenta as aproximagoes calculadas das distancias de Wasserstein entre as dis-
tribuicoes de probabilidade dos vetores aleatérios X e Y € R™. Esses vetores representam dis-
tribuigoes conjuntas de até cinco segdes, com m € {1,2,3,4,5}, referentes & resposta X para
diferentes At. Para cada valor de At, as segoes sao selecionadas uniformemente com um es-
pacamento de At, resultando nas seguintes defini¢oes: X = [X(t1), X(t2), - , X (tn)]T e Y =
[X (tms1), 5 X(t2m)]T, com a condi¢do de que t; = t; + (j — 1)At para j = 1,...,2m. Para
cada ponto do grafico, a posigdo no eixo ¢ indica o instante inicial selecionado para a segdo X (7).
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Verifica-se que as distancias convergem para qualquer dimensao, sendo que para m = 1 a conver-
géncia é a mais lenta.

4 Conclusoes

Este trabalho investigou a resposta de um sistema deterministico massa-mola-amortecedor sub-
metido a um carregamento descrito por um processo estocastico estacionario. O principal objetivo
foi utilizar aproximagoes numeéricas para as distincias de engenharia e de Wasserstein a fim de
verificar se a resposta do sistema apresentaria caracteristicas de estacionariedade no regime per-
manente. A distancia de engenharia, focada na proximidade das médias das distribuigoes, foi util
para uma avaliagao preliminar, enquanto a distancia de Wasserstein ofereceu uma comparagao mais
robusta, permitindo quantificar a divergéncia entre as aproximacgoes obtidas para as distribuigoes
de probabilidade em diferentes se¢oes do processo estocéstico.

Além disso, devido ao uso do método de Monte Carlo, a distribui¢do de probabilidade conjunta
de diferentes se¢oes da resposta do sistema nao era conhecida, havendo apenas histogramas. Isso
gerou desafios para as comparagoes, uma vez que comparar histogramas é, a principio, uma tarefa
imprecisa e de inspegdo visual. Adicionalmente, a visualizagdo de histogramas é limitada a no
maximo duas se¢oes do processo estocastico simultaneamente. Nesse contexto, o uso da distancia
de Wasserstein mostrou-se fundamental para superar essas limitagoes. Utilizou-se essa métrica para
comparar as distribuicoes de probabilidade conjuntas de até cinco segoes do processo estocastico.

Por fim, a metodologia desenvolvida neste trabalho pode ser adaptada para a analise de outros
sistemas mecénicos, incluindo sistemas nao lineares. Sua utilidade decorre da auséncia de resultados
tedricos gerais para a caracterizagao da estacionariedade em sistemas desse tipo.
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