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Resumo: In this short presentation I give a formula for counting cycles of a given length in
strongly connected graphs and some of its properties.
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1 Introduction

Let N be a positive integer, R a real number, µ the classical Möbius function defined by the
rules: a) µ(+1) = +1, b) µ(g) = 0, if g = pe11 ...p

eq
q , p1, ..., pq primes, and any ei > 1, c)

µ(p1...pq) = (−1)q. The polynomial of degree N in R with rational coefficients given in terms
of Möbius function,

M(N ;R) =
1

N

∑
g|N

µ(g)R
N
g , (1.1)

is called the Witt polynomial. It satisfies the formal relation

∞∏
N=1

(1− zN )M(N ;R) = 1−Rz (1.2)

called the Witt identity. See the introduction to [4] for a nice account about these relations.

In [5] (see [1], section 4, for a proof) Sherman remarks that M(N ;R) is the number of
equivalence classes of non-periodic cycles of length N which traverse counterclockwisely the
edges of a graph with R loops counterclockwisely oriented and hooked to a single vertex. With
this result in mind a natural question to ask is whether (1) and (2) can be generalized to other
graphs. The question has a positive answer. The objective here is to give the generalizations of
(1) and (2) for strongly connected graphs. In section 2, the basic formula for counting cycles is
given. In section 3, some properties of the copunting formula are given.

2 Counting cycles of a given length

The results in this section are based on ideas from [2] and [6].

Let G = (V,E) be a finite directed and strongly connected graph where V is the set of
vertices with |V | elements and E is the set of oriented edges with |E| elements labeled e1,
...,e|E|. An edge has an origin and an end as given by its orientation. The graph may have
multiple edges and loops but no 1-degree vertices. A graph is strongly connected if it contains
a directed path from a to b and a directed path from b to a for every pair of vertices a, b.
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A path in G is given by an ordered sequence (ei1 , ..., eiN ), ik ∈ {1, ..., |E|}, of oriented
edges such that the end of eik is the origin of eik+1

. The orientation of an edge defines the origin
and the end of it.

All paths considered here are cycles. These are closed paths, that is, the end of eiN
coincides with the origin of ei1 . A cycle has a natural orientations induced by the orientation
of its edges. The length of a cycle is the number of edges in its sequence. A cycle p is called
periodic if p = qr for some r > 1 and q is a non periodic cycle. Number r is called the period
of p. The sequence (eiN , ei1 , ..., eiN−1) is called a circular permutation of (ei1 , ..., eiN ). Circular
permutations of a sequence represent the same path. The inverse of a path is not possible.

The classical Möbius inversion formula is used here. Given arithmetic functions f and g
it states that g(n) =

∑
d|n f(d) if and only if f(n) =

∑
d|n µ(d)g(n/d).

In order to count cycles of a given length in a graph G a crucial tool is the edge adjacency
matrix of G. This is the |E| × |E| matrix T defined as follows: Tij = 1, if end vertex of edge i
is the start vertex of edge j; Tij = 0, otherwise.

Theorem 2.1. The number TrTN (over)counts cycles of length N in a graph G.

Proof. Let a and b be two edges of G. The (a, b)th entry of matrix TN is

(TN )(a,b) =
∑

ei1 ,...,eiN−1

T(a,ei1 )T(ei2 ,ei3 )...T(eiN−1
,b)

From the definition of the entries of T it follows that (TN )(a,b) counts the number of paths of
length N from edge a to edge b. For b = a, only cycles are counted. Taking the trace gives the
number of cycles with every edge taken into account as starting edge, hence, the trace overcounts
cycles because every edge in a cycle is taken into account as starting edge. �.

Theorem 2.2. Denote by α(N,T ) the number of equivalence classes of non periodic cycles of
length N which traverse a graph G. This number is given by the following formula:

α(N,T ) =
1

N

∑
g|N

µ(g) TrT
N
g (2.1)

Proof. In the set of TrTN cycles there is the subset with Nα(N,T ) elements formed by
the non periodic cycles of length N plus their circular permutations and the subset with∑

g 6=1|N
N
g α(Ng , T ) elements formed by the periodic cycles of length N (whose periods are the

common divisors of N) plus their circular permutations. (A cycle of period g and length N is
of the form

(ek1ek2 ...ekt)
g

where t = N/g, and (ek1ek2 ...ekt) is a non periodic cycle so that the number of periodic cycles
with period g plus their circular permutations is given by (N/g)α(N/g, T )). Hence,

TrTN =
∑
g|N

N

g
α

(
N

g
, T

)
Möbius inversion formula gives the result. �

Remark 1. Some terms in the right hand side of (2.1) are negative. In spite of that the right
hand side is always positive. Multiply both sides by N . The fist term equals TrTN while the
other terms give (in absolute value) the number according to period of the various subsets of
periodic cycles which are proper subsets of the larger set with TrTN elements.

Remark 2. (1.1) is a special case of (2.1). Let G be the graph In this case T is the R × R
matrix with all entries equal to one and TrTN = RN so that α(N,T ) =M(N ;R).
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Theorem 2.3. Define

g(z) :=
∞∑
N=1

TrTN

N
zN . (2.2)

Then,
+∞∏
N=1

(1− zN )α(N) = e−g(z) = det(1− zT ) (2.3)

Proof. The result follows taking the formal logarithm of both sides of equalities. �

Remark 3. (1.2) is a special case of (2.3) when G is the graph with R loops counterclockwise
oriented and hooked to a single vertex. In this case det(1− zT ) = 1−Rz where T is the matrix
with all entries equal to 1. See Remark 2.

Remark 4. The identity (2.3) have a remarkable resemblance with the Ihara-Bass identity.
They are not the same objects because in the latter the underlying graph need not be strongly
connected and cycles can traverse an edge following the inverse orientation. See [2] and [6].

Remark 5. It is well known that the number of cycles of length N in a graph G can be
computed using the vertex adjacency matrix A, hence, TrTN = TrAN . The reciprocal of (2.3)
with the matrix T replaced by A is the so called Bowen-Lanford zeta function of a graph. The
reciprocal of (2.3) is this function as expressed in term of the edge adjacency matrix.

Example. G1, the graph shown in the Figure. The edge matrix of G1 is

T =

 0 1 0
1 0 1
0 1 0


The matrix has the trace TrTN = 0 if N is odd and TrTN = 2

N
2

+1 if N is even, and the
determinant

det(1− zT ) = 1− 2z2.

1

3

2

Figure 1: Graph G1

The number of classes of nonperiodic cycles of length N is α(N) = 0, if N is odd; for N even,

α(N) =
1

N

∑
g|N

N/g even

µ(g)2
N
2g

+1
.

The first few values are α(2) = 2, α(4) = 1, α(6) = 2, α(8) = 3, α(10) = 6. For N = 2, the
classes are [e1e2] and [e2e3]. For N = 4, only [e1e2e3e2]. Furthermore,

+∞∏
N=1

(1− zN )α(N) = 1− 2z2.
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3 Some properties

In [7] Metropolis and Rota proved that the Witt polynomials satisfy several important identities
which they used to build the necklace algebra. Theorem 3.1 shows that α satisfies similar
identities. Theorem 3.2 gives a generalization of the classical Strehl identity [8]. Theorem 3.3
below together with results from [3] imply that (4) and (5) can be interpreted as data associated
to a Lie superalgebra.

Theorem 3.1. Given the matrices T1 and T2 denote by T1 ⊗ T2 the Kronecker product of T1

and T2. Then, ∑
[s,t]=N

(s, t)α(s, T1)α(t, T2) = α(N,T1 ⊗ T2), (3.1)

(s, t) is the maximum common divisor of s and t. The summation is over the set of all positive
integers s, t such that [s, t] = N , [s, t] the least common multiple of s, t. Also,

α(N,T l) =
∑

[l,t]=Nl

t

N
α(t, T ). (3.2)

and
(r, s)α(N,T

s/(r,s)
1 ⊗ T r/(r,s)2 ) =

∑
(rp, sq)α(p, T1)α(q, T2) (3.3)

The sum is over p, q such that pq/(pr, qs) = N/(r, s).

Theorem 3.2. ∏
k≥1

[
1

det(1− zkT1)

]α(k,T2)

=
∏
j≥1

[
1

det(1− zjT2)

]α(j,T1)

(3.4)

Theorem 3.3. Define g(z) :=
∑∞

N=1
TrTN

N zN . Then,

+∞∏
N=1

(1− zN )±Ω(N,T ) = e∓g(z) = [det(1− zT )]± = 1∓
+∞∑
i=1

c±(i)zi, (3.5)

where

c±(i) =

i∑
m=1

λ±(m)
∑

a1 + 2a2 + ...+ iai = i
a1 + ...+ ai = m

i∏
k=1

(TrT k)ak

ak!kak
(3.6)

with λ+(m) = (−1)m+1, λ−(m) = +1, c+(i) = 0 for i > 2|E|, and c−(i) ≥ 0. Furthemore,

TrTN = N
∑

s∈S(N)

(±1)|s|+1 (| s | −1)!

s!

∏
c±(i)si (3.7)

where S(N) = {s = (si)i≥1 | si ∈ Z≥0,
∑
isi = N} and | s |=

∑
si, s! =

∏
si!.

In section 2.3 of [3], given a formal power series
∑+∞

i=1 tiz
i with ti ∈ Z, for all i ≥ 1,

the coefficients in the series are interpreted as the superdimensions of a Z>0-graded superspace
V =

⊕∞
i=1 Vi with dimensions dimVi = |ti| and superdimensions DimVi = ti ∈ Z. Let L be

the free Lie superalgebra generated by V . Then, L =
⊕∞

N=1 LN and the subspaces LN have
dimension given by

DimLN =
∑
g|N

µ(g)

g
W

(
N

g

)
(3.8)
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where g ranges over all common divisors of N ,

W (N) =
∑

s∈S(N)

(| s | −1)!

s!

∏
t(i)si (3.9)

is called the Witt partition function. Furthermore,

∞∏
N=1

(1− zN )±DimLN = 1∓
∞∑
i=1

f±(i)zi. (3.10)

where f+(i) = t(i) and f−(i) = dimU(L)i is the dimension of the i-th homogeneous subspace of
the universal enveloping algebra U(L).

Apply this interpretation to the determinant (2.3) which is a polynomial of degree |E| in
the formal variable z. It can be taken as a power series with coefficients ti = 0, for i > |E|.
Comparison of (3.8), (3.9), (3.10) with (3.5), (3.6), (3.7) implies the following result:

Theorem 3.4. Given a graph G, T its edge adjacency matrix, let V =
⊕|E|

i=1 Vi be a Z>0-graded
superspace with finite dimensions dimVi = |c+(i)| and the superdimensions DimVi = c+(i) given
by the coefficients of det(1 − zT ) (see (3.6)). Let L =

⊕∞
N=1 LN be the free Lie superalgebra

generated by V . Then, LN has superdimension DimLN = α(N). The algebra has generalized
Witt identity given by (2.3) and its reciprocal is the generating function for the dimensions of
the subspaces of the enveloping algebra U(L) which are given by c−(i) in (3.6).

Acknowledgements

I thank Prof. Asteroide Santana for making the figure and help with latex commands.

References

[1] G. A. T. F. da Costa, J. Variane, Feynman identity: a special case revisited, Letters in
Math. Phys. 73 (2005), 221-235.

[2] G. A. T. F. da Costa, A Witt type formula, arxiv.org/pdf/1302.6950v2.

[3] S.-J. Kang: Graded Lie Superalgebras and the Superdimension Formula, J. Algebra, 204
(1998) 597-655.

[4] P. Moree, The formal series Witt transform, Discrete Math. 295 (2005), 145-160.

[5] S. Sherman, Combinatorial aspects of the Ising model for ferromagnetism.II. An analogue
to the Witt identity, Bull. Am. Math. Soc. 68 (1962), 225-229.

[6] H. M. Stark, A. A. Terras, Zeta Functions of Finite Graphs and Coverings, Adv. Math.
121, 124-165 (1996).

[7] Metropolis, N., Rota, G-C., Witt vectors and the algebra of necklaces, Adv. Math. 50 (1983)
95-125.

[8] Strehl, Cycle counting for isomorphism types of endofunctions, Bayreuth Math. Schr. 40
(1992), 153-167.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0230 010230-5 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0230

