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Resumo. Este artigo propõe uma abordagem híbrida combinando Otimização por Enxame de
Partículas (PSO) e Naive Bayes (NB) para melhorar a classificação de dados desbalanceados re-
lacionados à sobrevida de pacientes com Doença de Chagas. O objetivo é otimizar a seleção de
instâncias e variáveis, ajustando hiperparâmetros do NB para aumentar a acurácia e generalização
do modelo. A metodologia emprega PSO na etapa de pré-processamento, seguida pela classificação
com NB, avaliando desempenho por meio de métricas como Area Under the Receiver Operating
Characteristic Curve (AUC-ROC), F1-Score e sensibilidade. Os resultados mostram que a abor-
dagem PSO+NB supera métodos tradicionais, com melhorias estatisticamente significativas (p <
0,05) na classificação de casos minoritários. Os resultados evidenciam que a técnica proposta é eficaz
para lidar com desbalanceamento de dados, oferecendo uma ferramenta promissora para auxiliar no
diagnóstico em regiões com recursos limitados.

Palavras-chave. Particle Swarm Optimization, Naive Bayes, Dados Desbalanceados, Doença de
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1 Introdução
A disponibilidade de grandes e complexos conjuntos de dados provenientes de pacientes e ins-

talações médicas tem contribuído significativamente para a aplicação de métodos de aprendizagem
de máquina no campo da saúde [14, 16]. Essas técnicas de aprendizagem de máquina podem
analisar rapidamente grandes volumes de dados e gerenciar de forma eficaz as relações complexas
dentro deles. Como resultado, elas demonstraram potencial para melhorar os indicadores de saúde
e qualidade de vida, além de possibilitar que especialistas em saúde avancem na pesquisa clínica
[15].

A principal contribuição deste trabalho é a proposta de uma nova abordagem que integra a
Otimização por Enxame de Partículas (PSO) [7] com o classificador Naive Bayes [9] para enfrentar
o desafio da classificação de dados desbalanceados, detalhado na Seção 2. Utilizando o PSO,
conseguimos selecionar de maneira eficaz instâncias para balancear o conjunto de dados, garantindo
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uma representação mais equitativa das classes. Posteriormente, empregamos o classificador Naive
Bayes para a tarefa de classificação. Esta metodologia integrada foi especificamente aplicada para
prever a mortalidade de pacientes dois anos antes do evento ocorrer em um conjunto de dados
desbalanceado relacionado à doença de Chagas [12], demonstrando sua eficácia em melhorar o
desempenho da classificação, conforme discutido na Seção 3. Nossos resultados sugerem que essa
abordagem melhora significativamente a precisão e a confiabilidade do diagnóstico da doença de
Chagas [5], oferecendo uma ferramenta valiosa para pesquisadores e profissionais da área médica
que enfrentam desafios semelhantes de classificação.

2 Otimização por Enxame de Partículas (PSO) e Naive Bayes
para Classificação de Dados Desbalanceados

Esta seção descreve uma nova abordagem para a classificação de dados desbalanceados usando
o algoritmo de Otimização por Enxame de Partículas (PSO). O PSO é utilizado para selecionar as
melhores instâncias, variáveis e parâmetros na construção de um modelo de classificação. Estudos
anteriores exploraram o uso da Otimização por Enxame de Partículas (PSO) para lidar com dados
desbalanceados, embora frequentemente focando em aspectos isolados. Por exemplo, Ping Cao et
al. [1] propôs um método para classificar dados desbalanceados usando PSO para otimizar uma rede
neural, melhorando o desempenho da classificação ao penalizar erros da classe minoritária e ajustar
a importância das variáveis. Por outro lado, [6] sugeriu uma combinação de PSO com o classificador
Naive Bayes (NB) para selecionar os melhores dados de treinamento, melhorando a eficiência do
modelo. No entanto, o trabalho proposto realiza simultaneamente a seleção de instâncias, a seleção
de variáveis e o ajuste de parâmetros. O principal objetivo é alcançar uma maior precisão e
generalização, avaliando o F1-Score para cada classe, enquanto reduz a complexidade do modelo
através da seleção adaptativa de variáveis.

A combinação da Otimização por Enxame de Partículas (PSO) com o Naive Bayes (NB) é
particularmente promissora porque aproveita as forças complementares de cada técnica. A PSO
é hábil em explorar o espaço de soluções ajustando eficientemente os parâmetros. Enquanto isso,
o NB é um classificador probabilístico que assume independência condicional entre as variáveis e
é notável por sua eficiência computacional, especialmente com grandes conjuntos de dados. No
entanto, como observado por Zhang [17], o NB pode levar a estimativas imprecisas quando as
suposições de independência não são atendidas. A sinergia dessas duas abordagens é poderosa
porque a PSO pode otimizar os parâmetros do NB, melhorando a precisão da classificação ao
encontrar configurações mais adequadas. Assim, esta combinação melhora a capacidade do modelo
de lidar com dados do mundo real, onde as variáveis são frequentemente correlacionadas.

O estudo se desenvolve em duas etapas principais. A primeira etapa envolve a normalização
de dados, abordada na Seção 2.1, crucial no pré-processamento, especialmente ao trabalhar com
algoritmos de aprendizagem de máquina sensíveis às escalas das variáveis. A segunda etapa, de-
talhada na Seção 2.2, lida com a configuração do algoritmo PSO e descreve o desenvolvimento
da função objetivo. Esta função avalia a qualidade das soluções obtidas pela PSO, que seleciona
instâncias e variáveis com base em limiares estabelecidos, treina um modelo Naive Bayes com os
dados selecionados e calcula o F1-Score ponderado das previsões. A função também incorpora
penalização adaptativa para equilibrar a complexidade do modelo.

2.1 Padronização de Dados
A padronização de dados é uma técnica amplamente utilizada em estatística e aprendizagem

de máquina para transformar diferentes variáveis em uma escala comum, facilitando a comparação
e análise dos dados. Um dos métodos mais comuns de padronização é o uso do Z-score [8].
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O Z-score, também conhecido como escore padronizado, é uma medida que descreve a posição
de um valor em relação à média de um conjunto de dados, em unidades de desvio padrão. O
Z-score de um valor x é calculado conforme equação (1).

z =
x− µ

σ
(1)

onde:

• x é o valor sendo padronizado.

• µ é a média do conjunto de dados.

• σ é o desvio padrão do conjunto de dados.

O Z-score indica quantos desvios padrão um valor está acima ou abaixo da média. Um Z-score
positivo indica que o valor está acima da média, enquanto um Z-score negativo indica que o valor
está abaixo da média. Por exemplo:

• Um Z-score igual a 0 significa que o valor é igual à média.

• Um Z-score igual a 1 significa que o valor é um desvio padrão acima da média.

• Um Z-score igual a -1 significa que o valor é um desvio padrão abaixo da média.

Padronizar dados usando o Z-score é particularmente útil ao comparar dados que estão em
diferentes escalas ou unidades. Ao converter os dados em Z-scores, todas as variáveis terão uma
média de zero e um desvio padrão de um, tornando-as diretamente comparáveis.

O Z-score é uma ferramenta poderosa para a padronização de dados, permitindo que variáveis
de diferentes escalas sejam comparadas uniformemente. Sua aplicação é essencial em vários campos
de estatística e aprendizagem de máquina, onde a comparação precisa de dados é crucial.

2.2 Otimização por Enxame de Partículas (PSO)

A PSO é um algoritmo de otimização baseado em população. Cada partícula, inicializada
aleatoriamente, representa uma solução potencial e se move pelo espaço de busca influenciada pela
sua melhor posição encontrada e pela melhor posição encontrada de seus vizinhos [2].

2.2.1 Parâmetros

A definição de parâmetros é de extrema relevância devido ao seu impacto na estratégia de
exploração de possíveis soluções.

Neste trabalho, o critério usado para selecionar variáveis e instâncias da solução potencial
fornecida pela PSO foi a configuração de um limiar de seleção. Ou seja, a variável ou instância é
selecionada quando a sugestão, dentro dos limites do espaço de busca, excede o limiar pré-definido.

O peso de inércia é atualizado usando o método de resfriamento em cada iteração, o compo-
nente cognitivo foi progressivamente aumentado em cada iteração enquanto o componente social
permaneceu estático. Para convergir rapidamente e eficientemente, foi adotada a exploração de
vizinhança global, onde cada partícula pode se comunicar diretamente com todas as outras influ-
enciadas pelo melhor resultado encontrado por qualquer partícula no enxame.
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2.2.2 Função Objetivo

A função objetivo desempenha um papel central no processo de otimização e é responsável
por avaliar, em cada iteração, a qualidade de cada solução candidata gerada pelo algoritmo de
Otimização por Enxame de Partículas (PSO) — ou seja, uma combinação específica de variáveis e
instâncias selecionadas. Neste trabalho, a função objetivo foi definida com os seguintes passos:

• Definição dos dados de treinamento a partir da seleção de variáveis e instâncias com base no
limiar configurado.

• Execução do modelo de classificação Naive Bayes com as instâncias, variáveis e parâmetro
de suavização selecionados.

• Previsão usando o modelo treinado no conjunto de teste.

• Cálculo do F1-Score ponderado das classes.

• Aplicação de penalização ao F1-Score com base no número de variáveis selecionadas para
controlar a complexidade do modelo, conforme equação (2)

Fobjetivo = (F1C0 · p1) + (F1C1 · p2)− P ·N2 (2)

onde:

• F1C0 é o F1-Score para a classe 0.

• F1C1 é o F1-Score para a classe 1.

• p1 e p2 são os pesos atribuídos a cada classe.

• P é o fator de penalização.

• N é o número de variáveis selecionadas.

3 Aplicação em uma Base de Dados Desbalanceada de Do-
ença de Chagas

A Doença de Chagas (DC) é reconhecida como uma doença tropical negligenciada pela OMS e
continua sendo um problema de saúde pública. Estima-se que 30% dos pacientes podem desenvolver
anormalidades cardíacas que podem levar à morte [5]. Na América Latina, cerca de 5,7 milhões de
pessoas estão infectadas, com uma taxa de mortalidade anual de 12.000 casos [5].

Estudos indicam que 80% dos infectados não têm acesso a diagnóstico e tratamento adequados,
resultando em alta mortalidade e custos sociais significativos [10]. Nesse contexto, a Aprendizagem
de Máquina tem se mostrado promissora para definir intervenções e reduzir o impacto da DC [5,
11]. Uma ferramenta que preveja o risco de morte com antecedência pode ajudar os profissionais
de saúde, especialmente em regiões com acesso limitado a exames complexos.

Aplicamos nossa abordagem a um conjunto de dados sobre DC [5], com o objetivo de prever
a mortalidade do paciente dois anos antes do evento. O conjunto de dados inclui variáveis de
entrevista e exames complementares, totalizando 128 variáveis preditoras, além da classe ’morte’
ou ’não morte’ em dois anos. Os dados são da Coorte SaMi-Trop, com 551 pacientes com DC de
21 municípios em Minas Gerais, dos quais 134 (24,32%) morreram dentro de 2 anos, indicando
desbalanceamento considerável.
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Os dados foram coletados entre 2013 e 2016. Para validação do modelo, o conjunto de dados
foi dividido de maneira estratificada, com 80% para treinamento e 20% para teste, garantindo a
proporcionalidade da classe. A normalização de dados foi realizada usando a técnica de Z-score.

Para estabelecer uma linha de base, foram realizadas execuções de classificação usando apenas
o algoritmo Naive Bayes. Os resultados, apresentados na Tabela 1, mostraram baixas precisões
gerais e de classe, refletindo o desbalanceamento das classes.

Tabela 1: Classificador Naive Bayes.
Execução Acc R+ P+ F1+ F2 R- P- F1- AUC-ROC Variáveis Instâncias de Treino

1 0.31 0.93 0.25 0.39 0.60 0.11 0.82 0.19 0.52 128 440
2 0.42 1.00 0.30 0.46 0.68 0.24 1.00 0.38 0.62 128 440
3 0.34 0.81 0.24 0.38 0.56 0.19 0.76 0.30 0.50 128 440
4 0.66 0.93 0.41 0.57 0.74 0.57 0.96 0.72 0.75 128 440
5 0.37 0.89 0.26 0.41 0.60 0.20 0.85 0.33 0.55 128 440
6 0.41 1.00 0.29 0.45 0.68 0.23 1.00 0.37 0.61 128 440
7 0.41 0.96 0.29 0.44 0.65 0.23 0.95 0.37 0.59 128 440
8 0.66 0.74 0.39 0.51 0.63 0.63 0.88 0.74 0.69 128 440
9 0.43 0.93 0.29 0.44 0.64 0.27 0.92 0.42 0.60 128 440
10 0.28 0.93 0.24 0.38 0.59 0.07 0.75 0.13 0.50 128 440

A Tabela 2 descreve os parâmetros utilizados na configuração de otimização do modelo PSO. O
Intervalo de Busca de Variáveis e Instâncias foi definido com base na natureza do problema, onde
o objetivo é decidir se deve-se selecionar uma variável ou instância específica. O Intervalo de Busca
de Suavização NB foi determinado empiricamente. O valor do Limiar de Variável foi ajustado para
aumentar a probabilidade de selecionar o menor número possível de variáveis, reduzindo assim a
complexidade do modelo, o que é ainda mais aprimorado pela configuração da variável Penalidade
(P ). Esta penalidade foi calculada como o inverso do número total de variáveis preditoras, o que
significa que selecionar mais variáveis incorre em uma penalidade maior. O Limiar de Instância
foi configurado para balancear a probabilidade de selecionar uma instância. O Peso (p1 e p2) foi
atribuído para garantir que o F1-Score de ambas as classes seja o mesmo. O Peso de Inércia (w) foi
atualizado em cada execução usando o intervalo testado no estudo [13]. Para as variáveis Cognitiva
(c1) e Social (c2), foi observada a valor 2.0 sugerido em [3]; no entanto, para cada execução, c1
foi atualizado linearmente, aumentando gradualmente a ênfase nas contribuições individuais. A
variável Velocidade foi ajustada para metade do espaço de busca para uma exploração controlada.
As variáveis Número de partículas e Iterações foram escolhidas empiricamente.

Tabela 2: Parâmetros do PSO e Função Objetivo.
Descrição Valor
Intervalo de Busca de Variáveis e Instâncias [0, 1]
Intervalo de Busca de Suavização NB [1, 1e-9]
Limiar de Variável 0.7
Limiar de Instância 0.5
Penalidade (P ) 7.81E-03
Peso (p1 e p2) 0.5
Peso de Inércia (w) 0.9 a 0.4
Cognitiva (c1) 1.6 a 2.0
Social (c2) 2.0
Número de partículas 50
Velocidade -0.5 a 0.5
Iterações 200
Inicialização Aleatória
Exploração de Vizinhança Global
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Os resultados obtidos na execução do modelo PSO+NB mostraram um ganho substancial,
tanto no desempenho geral quanto no desempenho de classes individuais, conforme observado na
Tabela 3. Neste contexto, vale destacar que a média de AUC-ROC foi de 0.59 para as execuções
de NB, 0.70 para GA+NB, 0.73 para MLP e 0.81 para PSO+NB. A AUC-ROC mede a capacidade
de discriminação do classificador [4]. Valores mais próximos de 1 indicam melhor desempenho na
classificação das classes. Os resultados claramente mostram que a abordagem do modelo PSO+NB
proporcionou melhorias significativas na precisão geral e nas métricas de precisão, recall, AUC-
ROC e F1 para ambas as classes. O modelo de classificação otimizado conseguiu encontrar um
conjunto de variáveis e testes capazes de lidar com o desbalanceamento de dados, resultando em
uma classificação mais equilibrada. Esses resultados superam os apresentados por [5], indicando
que a metodologia proposta pode ser aplicada a diversos outros problemas no campo da saúde que
sofrem com questões de desbalanceamento de classes.

Tabela 3: Otimização PSO + Classificador Naive Bayes.
Execução Acc R+ P+ F1+ F2 R- P- F1- AUC-ROC Variáveis Instâncias de Treinamento

1 0.85 0.56 0.75 0.64 0.59 0.94 0.87 0.90 0.75 1 226
2 0.85 0.85 0.64 0.73 0.80 0.84 0.95 0.89 0.85 2 240
3 0.87 0.81 0.71 0.76 0.79 0.89 0.94 0.91 0.85 2 220
4 0.82 0.63 0.63 0.63 0.63 0.88 0.88 0.88 0.76 2 218
5 0.82 0.96 0.58 0.72 0.85 0.77 0.98 0.87 0.87 2 215
6 0.90 0.85 0.77 0.81 0.83 0.92 0.95 0.93 0.88 3 209
7 0.85 0.59 0.73 0.65 0.62 0.93 0.88 0.90 0.76 2 235
8 0.81 0.85 0.58 0.69 0.78 0.80 0.94 0.86 0.82 2 219
9 0.80 0.70 0.58 0.63 0.67 0.83 0.90 0.86 0.77 2 227
10 0.85 0.56 0.75 0.64 0.59 0.94 0.87 0.90 0.75 1 225

4 Considerações Finais
Os resultados apresentados nesse artigo indicam que nossa abordagem poderia melhorar sig-

nificativamente a precisão e a confiabilidade do diagnóstico da doença de Chagas. Isso oferece
uma ferramenta valiosa para pesquisadores e profissionais da área médica que enfrentam o desafio
dos dados desbalanceados. Em cenários de saúde reais, falsos positivos podem causar ansiedade
desnecessária e levar a testes e tratamentos infundados, enquanto falsos negativos podem resul-
tar em diagnósticos perdidos e intervenções críticas atrasadas. Ao lidar efetivamente com dados
desbalanceados, nossa metodologia permitiria prever o risco de mortalidade para indivíduos com
condições de saúde raras, auxiliando os profissionais de saúde, especialmente em regiões com acesso
limitado a procedimentos diagnósticos complexos. Essas implicações práticas destacam a relevân-
cia de nossa abordagem na melhoria dos resultados dos pacientes e na otimização dos recursos de
saúde.

Agradecimentos
Os autores agradecem a FAPEMIG, CNPq e CAPES pelo suporte financeiro.

Referências
[1] P. Cao, D. Zhao e O. R. Zaïane. “A PSO-Based Cost-Sensitive Neural Network for Imbalanced

Data Classification”. Em: Trends and Applications in Knowledge Discovery and Data

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0347 010347-6 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0347


7

Mining. PAKDD 2013. Vol. 7867. Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, 2013, Cost–Sensitive Neural Network for Imbalanced Data Classification.

[2] L. N. de Castro. Fundamentals of Natural Computing. 1ª ed. Boca Raton: Taylor &
Francis Group, 2007.

[3] M. Clerc e J. Kennedy. “The particle swarm-explosion, stability, and convergence in a mul-
tidimensional complex space”. Em: IEEE transactions on Evolutionary Computation
6.1 (2002), pp. 58–73.

[4] T. Fawcett. “An introduction to ROC analysis”. Em: Pattern Recognition Letters 27.8
(2006). ROC Analysis in Pattern Recognition, pp. 861–874. issn: 0167-8655. doi: https:
//doi.org/10.1016/j.patrec.2005.10.010.

[5] A. M. Ferreira et al. “Two-year death prediction models among patients with Chagas Disease
using machine learning-based methods”. Em: PLoS Negl Trop 2 (2022). doi: 10.1371/
journal.pntd.0010356.

[6] N. K. Ghanad e S. Ahmadi. “Combination of PSO Algorithm and Naive Bayesian Clas-
sification for Parkinson Disease Diagnosis”. Em: Advances in Computer Science: An
International Journal 4.4 (2015), pp. 119–125.

[7] J. Kennedy e R. Eberhart. “Particle swarm optimization”. Em: Proceedings of the IEEE
International Conference on Neural Networks (1995), pp. 1942–1948. doi: 10.1109/
ICNN.1995.488968.

[8] D. S. Moore, G. P. McCabe e B. A. Craig. Introduction to the Practice of Statistics.
7th. New York: W.H. Freeman e Company, 2012. isbn: 9781429240321.

[9] R. E. Neapolitan. Learning Bayesian Networks. Pearson Prentice Hall, 2003.

[10] M. C. P. Nunes et al. “Chagas cardiomyopathy: an update of current clinical knowledge and
management: a scientific statement from the American Heart Association”. Em: Circulation
138.12 (2018), e169–e209.

[11] C. C. R. Sady e A. L. P. Ribeiro. “Symbolic features and classification via support vector
machine for predicting death in patients with Chagas disease”. Em: Computers in Biology
and Medicine 70 (2016), pp. 220–227.

[12] SaMi-Trop. Chagas disease dataset. Acesso em: 7 jul. 2024. 2022. url: http://journals.
plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.
0010356.s003.

[13] Y. Shi e Eberhart. “Particle swarm optimization: developments, applications and resources”.
Em: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat.
No. 01TH8546). Vol. 1. IEEE. 2001, pp. 81–86.

[14] H. H. Tseng et al. “Machine Learning and Imaging Informatics in Oncology”. eng. Em: On-
cology 98.6 (2020), pp. 344–362. issn: 0030-2414.

[15] J. Waring, C. Lindvall e R. Umeton. “Automated machine learning: Review of the state-of-
the-art and opportunities for healthcare”. Em: Artificial Intelligence in Medicine 104
(2020), p. 101822.

[16] J. Wiens e E. S. Shenoy. “Machine learning for healthcare: on the verge of a major shift in
healthcare epidemiology”. Em: Clinical Infectious Diseases 66.1 (2018), pp. 149–153.

[17] H. Zhang. “The optimality of naive Bayes”. Em: Proceedings of the Seventeenth Inter-
national Florida Artificial Intelligence. 2004.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0347 010347-7 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0347

