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Resumo. Este artigo propée uma abordagem hibrida combinando Otimizagdo por Enxame de
Particulas (PSO) e Naive Bayes (NB) para melhorar a classificacdo de dados desbalanceados re-
lacionados & sobrevida de pacientes com Doenca de Chagas. O objetivo é otimizar a sele¢do de
instancias e variaveis, ajustando hiperparametros do NB para aumentar a acuréacia e generalizagdo
do modelo. A metodologia emprega PSO na etapa de pré-processamento, seguida pela classificagao
com NB, avaliando desempenho por meio de métricas como Area Under the Receiver Operating
Characteristic Curve (AUC-ROC), F1-Score e sensibilidade. Os resultados mostram que a abor-
dagem PSO-+NB supera métodos tradicionais, com melhorias estatisticamente significativas (p <
0,05) na classificagao de casos minoritarios. Os resultados evidenciam que a técnica proposta é eficaz
para lidar com desbalanceamento de dados, oferecendo uma ferramenta promissora para auxiliar no
diagnédstico em regioes com recursos limitados.

Palavras-chave. Particle Swarm Optimization, Naive Bayes, Dados Desbalanceados, Doenga de
Chagas

1 Introducao

A disponibilidade de grandes e complexos conjuntos de dados provenientes de pacientes e ins-
talagoes médicas tem contribuido significativamente para a aplicagao de métodos de aprendizagem
de méaquina no campo da satude [14, 16]. Essas técnicas de aprendizagem de maquina podem
analisar rapidamente grandes volumes de dados e gerenciar de forma eficaz as relagoes complexas
dentro deles. Como resultado, elas demonstraram potencial para melhorar os indicadores de satide
e qualidade de vida, além de possibilitar que especialistas em satide avancem na pesquisa clinica
[15].

A principal contribuigdo deste trabalho é a proposta de uma nova abordagem que integra a
Otimizacao por Enxame de Particulas (PSO) [7] com o classificador Naive Bayes [9] para enfrentar
o desafio da classificacdo de dados desbalanceados, detalhado na Segdo 2. Utilizando o PSO,
conseguimos selecionar de maneira eficaz instancias para balancear o conjunto de dados, garantindo
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uma representagao mais equitativa das classes. Posteriormente, empregamos o classificador Naive
Bayes para a tarefa de classificagdo. Esta metodologia integrada foi especificamente aplicada para
prever a mortalidade de pacientes dois anos antes do evento ocorrer em um conjunto de dados
desbalanceado relacionado & doenca de Chagas [12], demonstrando sua eficicia em melhorar o
desempenho da classificagao, conforme discutido na Segao 3. Nossos resultados sugerem que essa
abordagem melhora significativamente a precisao e a confiabilidade do diagnoéstico da doenga de
Chagas [5], oferecendo uma ferramenta valiosa para pesquisadores e profissionais da &rea médica
que enfrentam desafios semelhantes de classificacao.

2 Otimizagao por Enxame de Particulas (PSO) e Naive Bayes
para Classificacao de Dados Desbalanceados

Esta secao descreve uma nova abordagem para a classificagao de dados desbalanceados usando
o algoritmo de Otimizagdo por Enxame de Particulas (PSO). O PSO é utilizado para selecionar as
melhores instancias, variaveis e parametros na construgao de um modelo de classificacao. Estudos
anteriores exploraram o uso da Otimiza¢ao por Enxame de Particulas (PSO) para lidar com dados
desbalanceados, embora frequentemente focando em aspectos isolados. Por exemplo, Ping Cao et
al. [1] propds um método para classificar dados desbalanceados usando PSO para otimizar uma rede
neural, melhorando o desempenho da classificacdo ao penalizar erros da classe minoritaria e ajustar
a importancia das variaveis. Por outro lado, [6] sugeriu uma combinagao de PSO com o classificador
Naive Bayes (NB) para selecionar os melhores dados de treinamento, melhorando a eficiéncia do
modelo. No entanto, o trabalho proposto realiza simultaneamente a selecao de instancias, a selegao
de variaveis e o ajuste de parametros. O principal objetivo é alcancar uma maior precisao e
generalizagao, avaliando o F1-Score para cada classe, enquanto reduz a complexidade do modelo
através da selecao adaptativa de varidveis.

A combinagdo da Otimizagdo por Enxame de Particulas (PSO) com o Naive Bayes (NB) é
particularmente promissora porque aproveita as forgas complementares de cada técnica. A PSO
é habil em explorar o espago de solugoes ajustando eficientemente os parametros. Enquanto isso,
o NB é um classificador probabilistico que assume independéncia condicional entre as variaveis e
é notavel por sua eficiéncia computacional, especialmente com grandes conjuntos de dados. No
entanto, como observado por Zhang [17], o NB pode levar a estimativas imprecisas quando as
suposicoes de independéncia nao sao atendidas. A sinergia dessas duas abordagens é poderosa
porque a PSO pode otimizar os pardmetros do NB, melhorando a precisao da classificagao ao
encontrar configuragoes mais adequadas. Assim, esta combinagdo melhora a capacidade do modelo
de lidar com dados do mundo real, onde as variaveis sao frequentemente correlacionadas.

O estudo se desenvolve em duas etapas principais. A primeira etapa envolve a normalizagao
de dados, abordada na Secao 2.1, crucial no pré-processamento, especialmente ao trabalhar com
algoritmos de aprendizagem de méaquina sensiveis as escalas das variaveis. A segunda etapa, de-
talhada na Secao 2.2, lida com a configuracao do algoritmo PSO e descreve o desenvolvimento
da fungé@o objetivo. Esta fungéo avalia a qualidade das solugdes obtidas pela PSO, que seleciona
instancias e varidveis com base em limiares estabelecidos, treina um modelo Naive Bayes com os
dados selecionados e calcula o F1-Score ponderado das previsdes. A funcao também incorpora
penalizagao adaptativa para equilibrar a complexidade do modelo.

2.1 Padronizagao de Dados

A padronizagao de dados é uma técnica amplamente utilizada em estatistica e aprendizagem
de méquina para transformar diferentes variaveis em uma escala comum, facilitando a comparagao
e analise dos dados. Um dos métodos mais comuns de padronizacéo é o uso do Z-score [8].
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O Z-score, também conhecido como escore padronizado, é uma medida que descreve a posigao
de um valor em relagao & média de um conjunto de dados, em unidades de desvio padrao. O
Z-score de um valor x é calculado conforme equagéo (1).

o= F &

onde:

e 1 ¢ o valor sendo padronizado.
e 4 é a média do conjunto de dados.

e o & o desvio padrao do conjunto de dados.

O Z-score indica quantos desvios padrao um valor esté acima ou abaixo da média. Um Z-score
positivo indica que o valor esta acima da média, enquanto um Z-score negativo indica que o valor
esta abaixo da média. Por exemplo:

e Um Z-score igual a 0 significa que o valor é igual a média.
e Um Z-score igual a 1 significa que o valor é um desvio padrao acima da média.
e Um Z-score igual a -1 significa que o valor é um desvio padrao abaixo da média.

Padronizar dados usando o Z-score é particularmente ttil ao comparar dados que estao em
diferentes escalas ou unidades. Ao converter os dados em Z-scores, todas as varidveis terao uma
média de zero e um desvio padrao de um, tornando-as diretamente comparéveis.

O Z-score é uma ferramenta poderosa para a padronizacao de dados, permitindo que variéveis
de diferentes escalas sejam comparadas uniformemente. Sua aplicagao é essencial em varios campos
de estatistica e aprendizagem de méaquina, onde a comparagao precisa de dados é crucial.

2.2 Otimizagao por Enxame de Particulas (PSO)

A PSO é um algoritmo de otimizagao baseado em populagdo. Cada particula, inicializada
aleatoriamente, representa uma solugao potencial e se move pelo espago de busca influenciada pela
sua melhor posi¢ao encontrada e pela melhor posigdo encontrada de seus vizinhos [2].

2.2.1 Parametros

A definicdo de pardmetros é de extrema relevancia devido ao seu impacto na estratégia de
exploracao de possiveis solugoes.

Neste trabalho, o critério usado para selecionar variaveis e instancias da solugao potencial
fornecida pela PSO foi a configuragao de um limiar de selecao. Ou seja, a varidvel ou instancia é
selecionada quando a sugestao, dentro dos limites do espago de busca, excede o limiar pré-definido.

O peso de inércia é atualizado usando o método de resfriamento em cada iteragao, o compo-
nente cognitivo foi progressivamente aumentado em cada iteracdo enquanto o componente social
permaneceu estéitico. Para convergir rapidamente e eficientemente, foi adotada a exploracao de
vizinhanga global, onde cada particula pode se comunicar diretamente com todas as outras influ-
enciadas pelo melhor resultado encontrado por qualquer particula no enxame.
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2.2.2 Funcao Objetivo

A funcao objetivo desempenha um papel central no processo de otimizacdo e é responsavel
por avaliar, em cada iteracao, a qualidade de cada solucao candidata gerada pelo algoritmo de
Otimizacao por Enxame de Particulas (PSO) — ou seja, uma combinagao especifica de variaveis e
instancias selecionadas. Neste trabalho, a fungao objetivo foi definida com os seguintes passos:

e Definicao dos dados de treinamento a partir da selegao de variaveis e instancias com base no
limiar configurado.

Execugao do modelo de classificagao Naive Bayes com as insténcias, variaveis e parametro
de suavizagao selecionados.

Previsao usando o modelo treinado no conjunto de teste.

Calculo do F1-Score ponderado das classes.

Aplicagao de penalizagao ao F1-Score com base no nimero de varidveis selecionadas para
controlar a complexidade do modelo, conforme equagao (2)

Eopjetivo = (F1Cq - p1) + (F1Cy - pa) — P - N? (2)

onde:

F1Cy é o F1-Score para a classe 0.

F1C; é o F1-Score para a classe 1.

® p1 e Py sao os pesos atribuidos a cada classe.

P é o fator de penalizagao.

N ¢é o namero de varidveis selecionadas.

3 Aplicacao em uma Base de Dados Desbalanceada de Do-
enca de Chagas

A Doenga de Chagas (DC) é reconhecida como uma doenga tropical negligenciada pela OMS e
continua sendo um problema de satide publica. Estima-se que 30% dos pacientes podem desenvolver
anormalidades cardiacas que podem levar a morte [5]. Na América Latina, cerca de 5,7 milhoes de
pessoas estao infectadas, com uma taxa de mortalidade anual de 12.000 casos [5].

Estudos indicam que 80% dos infectados ndo tém acesso a diagnostico e tratamento adequados,
resultando em alta mortalidade e custos sociais significativos [10]. Nesse contexto, a Aprendizagem
de Maquina tem se mostrado promissora para definir intervengées e reduzir o impacto da DC [5,
11]. Uma ferramenta que preveja o risco de morte com antecedéncia pode ajudar os profissionais
de satde, especialmente em regioes com acesso limitado a exames complexos.

Aplicamos nossa abordagem a um conjunto de dados sobre DC [5], com o objetivo de prever
a mortalidade do paciente dois anos antes do evento. O conjunto de dados inclui variaveis de
entrevista e exames complementares, totalizando 128 variaveis preditoras, além da classe 'morte’
ou 'nao morte’ em dois anos. Os dados sao da Coorte SaMi-Trop, com 551 pacientes com DC de
21 municipios em Minas Gerais, dos quais 134 (24,32%) morreram dentro de 2 anos, indicando
desbalanceamento consideravel.
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Os dados foram coletados entre 2013 e 2016. Para validacao do modelo, o conjunto de dados
foi dividido de maneira estratificada, com 80% para treinamento e 20% para teste, garantindo a
proporcionalidade da classe. A normalizacao de dados foi realizada usando a técnica de Z-score.

Para estabelecer uma linha de base, foram realizadas execugoes de classificagao usando apenas
o algoritmo Naive Bayes. Os resultados, apresentados na Tabela 1, mostraram baixas precisoes
gerais e de classe, refletindo o desbalanceamento das classes.

Tabela 1: Classificador Naive Bayes.
Execucgo Acc R+ P+ Fl+ F2 R- P-  F1- AUC-ROC Variaveis Instancias de Treino

1 0.31 093 025 039 060 011 082 0.19 0.52 128 440
2 042 1.00 030 046 0.68 024 1.00 0.38 0.62 128 440
3 0.34 081 024 038 056 019 0.76 0.30 0.50 128 440
4 0.66 0.93 041 0.57 074 057 0.96 0.72 0.75 128 440
5 037 0.89 026 041 0.60 020 0.85 0.33 0.55 128 440
6 0.41 1.00 0.29 045 068 023 1.00 0.37 0.61 128 440
7 041 096 029 044 065 023 0.95 0.37 0.59 128 440
8 0.66 0.74 039 0.51 0.63 0.63 0.88 0.74 0.69 128 440
9 043 093 029 044 064 027 092 042 0.60 128 440
10 0.28 093 024 038 0.59 0.07 0.75 0.13 0.50 128 440

A Tabela 2 descreve os parametros utilizados na configuragao de otimizacao do modelo PSO. O
Intervalo de Busca de Varidveis e Instdncias foi definido com base na natureza do problema, onde
o objetivo é decidir se deve-se selecionar uma variavel ou instancia especifica. O Intervalo de Busca
de Suaviza¢ao NB foi determinado empiricamente. O valor do Limiar de Varidvel foi ajustado para
aumentar a probabilidade de selecionar o menor ntmero possivel de variaveis, reduzindo assim a
complexidade do modelo, o que é ainda mais aprimorado pela configuracao da variavel Penalidade
(P). Esta penalidade foi calculada como o inverso do ntimero total de variaveis preditoras, o que
significa que selecionar mais varidveis incorre em uma penalidade maior. O Limiar de Instdncia
foi configurado para balancear a probabilidade de selecionar uma instancia. O Peso (p; e po) foi
atribuido para garantir que o F1-Score de ambas as classes seja o mesmo. O Peso de Inércia (w) foi
atualizado em cada execugdo usando o intervalo testado no estudo [13]. Para as variaveis Cognitiva
(c1) e Social (c3), foi observada a valor 2.0 sugerido em [3]; no entanto, para cada execugao, ¢y
foi atualizado linearmente, aumentando gradualmente a énfase nas contribuicoes individuais. A
variavel Velocidade foi ajustada para metade do espago de busca para uma exploragao controlada.
As variaveis Numero de particulas e Iteragoes foram escolhidas empiricamente.

Tabela 2: Parametros do PSO e Funcao Objetivo.

Descricao Valor
Intervalo de Busca de Variaveis e Instancias [0, 1]
Intervalo de Busca de Suavizagao NB [1, 1e-9]
Limiar de Variavel 0.7
Limiar de Instancia 0.5
Penalidade (P) 7.81E-03
Peso (p1 € p2) 0.5
Peso de Inércia (w) 09a0.4
Cognitiva (cq) 1.6 a2.0
Social (cg) 2.0
Nuamero de particulas 50
Velocidade -0.5a0.5
Iteragoes 200
Inicializagao Aleatoria
Exploragao de Vizinhanga Global
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Os resultados obtidos na execugao do modelo PSO+NB mostraram um ganho substancial,
tanto no desempenho geral quanto no desempenho de classes individuais, conforme observado na
Tabela 3. Neste contexto, vale destacar que a média de AUC-ROC foi de 0.59 para as execugbes
de NB, 0.70 para GA+NB, 0.73 para MLP e 0.81 para PSO+NB. A AUC-ROC mede a capacidade
de discriminagao do classificador [4]. Valores mais proximos de 1 indicam melhor desempenho na
classificagao das classes. Os resultados claramente mostram que a abordagem do modelo PSO+NB
proporcionou melhorias significativas na precisdo geral e nas métricas de precisdo, recall, AUC-
ROC e F1 para ambas as classes. O modelo de classificagdo otimizado conseguiu encontrar um
conjunto de variaveis e testes capazes de lidar com o desbalanceamento de dados, resultando em
uma classifica¢do mais equilibrada. Esses resultados superam os apresentados por [5], indicando
que a metodologia proposta pode ser aplicada a diversos outros problemas no campo da satude que
sofrem com questoes de desbalanceamento de classes.

Tabela 3: Otimizagao PSO + Classificador Naive Bayes.
Execugdo Acc R+ P+  Fl+ F2 R- P-  F1- AUC-ROC \Variaveis Instancias de Treinamento

1 0.85 0.56 0.75 0.64 0.59 094 087 0.90 0.75 1 226
2 0.85 0.85 064 0.73 0.80 0.84 095 0.89 0.85 2 240
3 087 0.81 071 0.76 0.79 0.89 0.94 091 0.85 2 220
4 0.82 0.63 0.63 063 0.63 0.88 0.88 0.88 0.76 2 218
5 0.82 096 0.58 0.72 085 0.77 0.98 0.87 0.87 2 215
6 0.90 0.85 0.77 081 0.83 092 095 0.93 0.88 3 209
7 0.85 0.59 0.73 0.65 0.62 093 0.88 0.90 0.76 2 235
8 0.81 0.85 0.58 0.69 0.78 0.80 0.94 0.86 0.82 2 219
9 0.80 0.70 0.58 0.63 0.67 0.83 0.90 0.86 0.77 2 227
10 085 056 0.75 0.64 059 094 0.87 0.90 0.75 1 225

4 Consideracoes Finais

Os resultados apresentados nesse artigo indicam que nossa abordagem poderia melhorar sig-
nificativamente a precisao e a confiabilidade do diagnéstico da doenca de Chagas. Isso oferece
uma ferramenta valiosa para pesquisadores e profissionais da &rea médica que enfrentam o desafio
dos dados desbalanceados. Em cenéarios de satude reais, falsos positivos podem causar ansiedade
desnecesséria e levar a testes e tratamentos infundados, enquanto falsos negativos podem resul-
tar em diagnosticos perdidos e intervengoes criticas atrasadas. Ao lidar efetivamente com dados
desbalanceados, nossa metodologia permitiria prever o risco de mortalidade para individuos com
condigoes de satide raras, auxiliando os profissionais de satde, especialmente em regides com acesso
limitado a procedimentos diagnésticos complexos. Essas implicagoes praticas destacam a relevan-
cia de nossa abordagem na melhoria dos resultados dos pacientes e na otimizacao dos recursos de
satde.
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