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Resumo. Seja G um grafo threshold conexo com n vértices. Neste trabalho, caracterizamos todos
os grafos G que tem uma autobase simplesmente estruturada para a matriz laplaciana, isto é, uma
base de R"™ composta de autovetores com entradas somente em {—1,0,1}. Nosso método consiste em
provar que os autoespagos de um grafo threshold devem possuir um ntmero minimo de vetores, além
de desenvolver um algoritmo para gerar todos os grafos threshold que satisfazem essa propriedade.
Palavras-chave. Grafo Threshold, Matriz Laplaciana, Autovetores, Autobase Simplesmente Es-
truturada

1 Introducao

Considere G = (V, E) um grafo simples com conjunto de vértices V = {1,...,n} e conjunto de
arestas E tal que |E| = m. O grau de um vértice ¢ de G é o niimero arestas incidentes ao vértice 4
e & denotado por d;. Escrevemos L(G) = D(G) — A(G) para a matriz laplaciana de G, onde A(G)
é a matriz de adjacéncia e D(G) é a matriz diagonal dos graus dos vértices de G. Os autovalores
de L(G) sao ordenados como pg > -+ > pn—1 > pn, = 0 e os autovetores correspondentes sao
x1, ..., x". Uma autobase de L(G) é uma base de R composta de autovetores de L(G) e uma
base ¢ simplesmente estruturada se consiste de vetores com entradas somente em {—1,0,1}, [7].
Denotamos o autoespago associado com um autovalor p of L(G) por

Er(p) ={xeR", x#0: L(G)x = pux}.

Dizemos que £ (i) é simplesmente estruturado se admite uma base simplesmente estruturada
e um grafo G é simplesmente estruturado se L(G) possui uma autobase simplesmente estruturada,
[1, 3, 6]. Nosso interesse aqui é determinar os grafos thresholds que sdo simplesmente estruturados.
Dentre as varias definigbes e teoremas de caracterizacao de grafos thresholds (como pode ser visto
em [5]), utilizamos a caracteriza¢do por uma sequéncia binaria.

Definigao 1.1. Dada uma sequéncia {b;} de 0's e 1's com n elementos, o grafo threshold associado
com a sequéncia bindria {b;} é o grafo G com n vértices construido recursivamente, comegando
com um grafo vazio, e parai=1,...,n

(i) adicione o vértice isolado i se b; =0,
(ii) adicione o vértice i adjacente a todos os vértices com rétulo menor que i se b; = 1.

Um vértice ¢ é um vértice isolado se b; = 0 e um vértice dominante se b; = 1. Claramente, G
é conexo se, e somente se, b, = 1. Ainda, a sequéncia binaria b = (0,bs,...,b,_1,1) de um grafo
threshold conexo G com pode ser escrita de forma compacta como b = 0511% ... (0% 1% onde 0% &
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uma abreviacio para s; > 1 zeros consecutivos e 1% é uma abreviacio para t; > 1 uns consecutivos.
k

Como n = Z(S’ +1;), isso assegura que 1 < k < |%]. Podemos particionar o conjunto de vértices
i=1

como V(G) = U UVi U...UU, UV, onde o conjunto U; consiste do i-ésimo grupo de vértices
isolados consecutivos na construgio de G de modo que |U;| = s;, and similarmente, V; consiste do
i-ésimo grupo de vértices dominantes na construcao de G, com |V;| = t;. Se s1 > 2, entdo a particdo
de grau de G é dada por {Uy, V1,...,U, Vi }. Caso contrario, se s = 1 entdo a particao de grau
torna-se {U; U V1,Us, Vo, ..., Uk, Vi}. Em ambos os casos, cada subconjunto U; é um conjunto
independente e cada subconjunto V; é uma clique [2]. A Figura 1 ilustra a partigdo de grau de um
grafo threshold; uma linha entre U; e V; indica que todos os vértices em U; sao adjacentes a todos
os vértices em Vj, e o retangulo indica que Vi U --- UV, € uma clique.

Figura 1: Estrutura global de um grafo threshold com sequéncia binaria b = 05111 ... 0%k 1%,
Cada vértice em U; é adjacente a V; U--- UV, V1 U--- UV, é uma clique e
U; U---UUyg é um conjunto independente. Fonte: o autor.

Seja S, o grafo estrela com n vértices. Para 1 < k < n, é facil ver que cada x* satisfazendo

1, sei<k+1,
xF={ -k, sei=k+1, (1)
0, sek+1<i<n,

ex" = (1,1,...,1)T sdo autovetores de L(S,,) associados com os autovalores 1, n e 0 de multipli-
cidades n —2, 1 e 1, respectivamente. Em [4] (Teorema A), os autores provaram que L(G) e L(Sy,)
compartilham os mesmos autovetores quando G é um grafo threshold com n vértices.

Teorema 1.1. (Teorema A, [}]) Seja G um grafo conexo com n vértices. Entao, G é um grafo
threshold se, e somente se, {x',... ,x®} ¢ uma autobase para a matriz laplaciana de G.

2 Resultados Principais

Sob a hipotese de que G é threshold e simplesmente estruturado, provamos que os autoespagos

de L(G) devem ter uma dimensao minima. Na Proposigao 2.1 provamos que dim(Er(n)) > [5].

Proposigao 2.1. Seja G um grafo threshold conexo com n vértices definido pela sequéncia bindria
b= (b1,bo, ..., bk, bks1,. . bp_1,bp) esejak €{1,...,n—1} tal que b1 =---=b,, e by, # b11.
Entao, £1(n) € simplesmente estruturado se, e somente se, 1 <k <[5 ].
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Da Proposigao 2.1, concluimos que o nimero minimo de vetores na base de E(n) ¢ [%].
Assumindo que G ¢é um grafo threshold conexo com sequéncia binaria tal que b4 = -+ =b, =1
and by = 0, para algum k € {2,...,n — 1}, sempre obtemos que n — k é um autovalor de L(G). Na

k

Proposigao 2.2, provamos que dim(Er(n — k)) > [5].

Proposigao 2.2. Seja G um grafo threshold conexo com n vértices definido pela sequéncia bindria
b= (b1,b2,b3,...,bk,brs1,...,b,) tal queby =0 ebgr1 =---=b, =1, para algumk € {1,... ,n—
1}. Sejal € {2,...,k—1} tal que by11 = --- =by e by # by41. Entio, EL(n — k) € simplesmente
estruturado se, e somente se, 2 <1 < ng

A Proposigao 2.2 implica que o nimero minimo de vetores na base de £r,(n — k) é (%W Assu-
mindo que G é um grafo threshold conexo com n vértices e sequéncia binaria

b= (b1,ba,...,b1—1,b1,b141, ., bk, b1, ., bn)

tal que by = 1, byy1 = -+ = b = 0e by = --- = b, = 1, para algum k € {1,...,[5]} e
lef{2,..., L%J }, sempre temos que £ (n) e £ (n — k) sado simplesmente estruturados, independen-
temente do que acontece nas posigoes by, ...,b_1 da sequéncia binéaria. Portanto, as Proposigoes

2.1 e 2.2 fornecem um importante ponto de partida para determinar os grafos threshold conexos
que sao simplesmente estruturados. A partir destes resultados temos uma caracterizacao dos grafos
threshold que sao simplesmente estruturados. Antes de enunciarmos o teorema precisamos definir
conceitos preliminares.

Seja P = [s1,t1,..., Sk, tx] uma partigdo crescente do inteiro n com 2k partes, tal que cada
parte s; e t;, para i =1,...,k, foi obtida pela aplicacao recursiva das ideias das Proposigoes 2.1 e

Uogz(")J-HJ
2

2.2. O maior valor possivel que k pode assumir é { , e esse valor é obtido uma vez que

podemos escrever

n n n n n n
=51+ |zl + gl sl vt (=] )
onde LQWZ%J é o menor valor inteiro possivel maior ou igual a 1.

O proximo teorema caracteriza quando um grafo threshold conexo de uma dada ordem n é
simplesmente estruturado.

Teorema 2.1. Um grafo threshold G com n vértices € simplesmente estruturado se, e somente
se, a sequéncia bindria que define G estd associada a uma particio P = [s1,t1,..., Sk, tx] tal que

E={1,..., L%J} e cada uma das partes s; et; de P, parai=1,...,k, satisfaz

N

k k
{n—zz_i;(&—i-tz)“ <t <n— Z (s 4+ t;) — 222, 2)

n—ti =S (si+ ) d .
’V l2,+1 < s §n7ti7 Z (5l+tl)*221 3, (3)

s1=n—1t —Z(Sl-l-tl) (4)

=2

3 Algoritmo

Os resultados da Segao 2 motivaram o desenvolvimento de um algoritmo, dividido em quatro
partes, para determinar todos os grafos thresholds conexos com uma dada ordem n.
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O Algoritmo 1 gera todas as parti¢des possiveis de um inteiro n (a ordem do grafo threshold).

Algoritmo 1: Dados os inteiros positivos n e k, seja | uma lista de nimeros inteiros positivos
de comprimento j tal que 0 < j < 2k — 1. Se j = 0, entdo [ é a lista vazia. A soma dos
elementos da lista [ serd denotada por sum. O Algoritmo 1 define as partes s; ou ¢; da partigao

P =[s1,t1,..., Sk, tg] do inteiro n, para algum i = 1,..., k, da seguinte forma:
e Se j =2¢comq=0,...,k—1, entao determinamos uma lista L que comeca em tf{ig =
{W} e termina em tF~4 = n — sum — 22(k-9)=2,
e Sej=2¢+1comgqg=0,...,k — 2, entao determinamos uma lista L que comeca em

k—q _ "n—sum'l
min 2

e termina em s~ = n — sum — 2%

k—q)—3

max

e Se j =2(k—1)+1, entao determinamos uma lista L com um tnico elemento s* = n — sum.

Algoritmo 1 - Define as partes de P

=

N

10.

11.

12.

13.
14.

15

Entrada: n, k, [ (lista)
Saida: Lista L

. j «len(])

. sum > (1)

se j & par entao

J
q< 3

tonin {ww
tmaz < N — Sum — 92(k—q)—2

L+ [tmzn : tmaa:]

senao se j < 2k — 1 entao

j—1

9 "5

Smin < I'nfgum'l

Smaz < N — sum — 22(k=0)=3

L — [Smin : Smar]

senao
| L« [n— sum]
. fim se

// len(l) & o comprimento de [

// >3(I) & a soma dos elementos de I

// lista crescente que comega em t;,
e termina em %4,

// lista crescente que comega em Spip
e termina em S0z

Algoritmo 2: Dados os inteiros positivos n e k, seja | uma lista de ntmeros inteiros positivos
de comprimento j tal que 0 < j < 2k e seja Py conjunto. O Algoritmo 2 constroi as partigoes

P= [31,t17..
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., Sk, tg] do inteiro n da seguinte forma:

e Se j = 2k, entao adicionamos a lista [ ao conjunto P.

e Se 0 < j < 2k — 1, aplique recursivamente os Algoritmos 1 e 2 até obter uma lista [ de
comprimento 2k.
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Algoritmo 2 - Constroéi as particoes P de comprimento 2k para um dado k
Entrada: n, k, [ (lista), Pr =0
Saida: Conjunto de particoes P

1. j + len(l) // len(l) & o comprimento de [
2. se j = 2k entao
3. Pr +— Pr Ul // adicione a reversa de [ ao conjunto Pj
4. retorne
5. senao
6. J « Algoritmo 1(n, k,1)
7. para ¢ em J faga
8. Algoritmo 2(n, k,l Ui, Py) // aplique recursivamente o Algoritmo 2
para n,k, Ui, Py, onde [U7
indica que adicionamos ¢ & lista !
9. fim para
10. fim se

Algoritmo 3: Dado o inteiro positivo n, seja m = {%J O Algoritmo 3 constroéi todas as

particoes P = [s1,t1,. .., Sk, tx] do inteiro n, para todo k = 1,...,m, da seguinte forma:

Algoritmo 3 - Constréi todas as partigoes P, para todo k=1,...,m

Entrada: n
Saida: Conjunto de particoes P

1. M {%J // nimero maximo de pares (s;,t;)

2. P+ 0 // inicializa o conjunto de partigdes

3. paracada k =1,...,m faga

4. Pr 0 // conjunto de partigdes de comprimento 2k

5. I+ ] // lista vazia

6. Algoritmo 2(n, k, 1, Py) // gera recursivamente todas as partigdes
de comprimento 2k

7. P+ P UPs // adiciona as partigles geradas pelo

Algoritmo 2 ao conjunto de partigdes P
8. fim para

Algoritmo 4: Consiste em gerar a sequéncia binéaria de todos os grafos threshold que sao sim-
plesmente estruturados a partir das partigoes obtidas do Algoritmo 3. Para cada particao P € P,
construimos a sequéncia binaria correspondente b, ou seja, se P = [s1,t1, ..., Sk, tx], entdo para cada
ie€{l,...,2k}, temos que bgy41 = -+ = bAg+s(usry ¢igual aOsed éimpareba, 1 =" =ba,4¢, &
igual a 1 se i é par, respectivamente, onde ¢ = | %], Ag = Z?Zl(sj +tj)e A = Z?;i(sj +1t5)+ sq.
Como o namero de elementos em cada uma das partes s; e t;, para i € {1,...,2k}, foi obtido
usando o Teorema 2.1, podemos garantir uma base simplesmente estruturada para o autoespago
associado a cada autovalor do grafo. Portanto, os grafos threshold definidos por essas sequéncias
binarias sdo simplesmente estruturados. O Algoritmo 4 é apresentado abaixo.
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Algoritmo 4 - Algoritmo para determinar grafos threshold que sao simples-
mente estruturados

Entrada: n (ordem do grafo)

Saida: Lista BS de sequéncias binarias

1. BS« 0 // inicializa a lista de sequéncias binarias
2. P < Algoritmo 3(n) // obtém as partigdes de n
3. para cada P € P faga
4. b« 0 // inicializa sequéncia binaria
5. paracada ¢ =1,...,len(P) faca
g+ 3]
7. AO — Z?Zl(sj + tj)
-1
8. A+~ Zj—:l (Sj + tj) + Sq
9. se 1 é impar entao
10. bag+1 == bAU+s(q+1) =0 // adicione s,i; zeros a b comegando no
indice Ag+1
11. senao
12. ba,y1 =" =bayt, =1 // adicione t; uns a b comegando no
indice A; +1
13. fim se
14. fim para
15. BS«+~ BS UD // adicione b a lista BS

16. fim para

4 Consideracoes Finais

Neste trabalho caracterizamos os grafos threshold conexo G com n vértices que sao simplesmente
estruturados. Além disso, desenvolvemos um algoritmo para gerar todos os grafos threshold conexos
que s&o simplesmente estruturados para dada ordem n. Alguns dos grafos obtidos pelo Algoritmo 4
satisfaz a propriedade de que a base de autovetores da matriz laplaciana admite uma ordenacao tal
que vetores nao consecutivos sejam ortogonais, os quais chamamos de grafos threshold fracamente
Hadamard diagonalizaveis (WHD). Em [1], os autores levantaram o problema de encontrar quais
cografos sao WHD. Como qualquer grafo threshold é um cografo, caracterizamos também todos
os grafos threshold com n vértices que sao WHD. Isso oferece uma resposta parcial ao problema
proposto em [1] sobre a determinagdo de quais cografos sao WHD.
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