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Resumo. Seja G um grafo threshold conexo com n vértices. Neste trabalho, caracterizamos todos
os grafos G que tem uma autobase simplesmente estruturada para a matriz laplaciana, isto é, uma
base de Rn composta de autovetores com entradas somente em {−1, 0, 1}. Nosso método consiste em
provar que os autoespaços de um grafo threshold devem possuir um número mínimo de vetores, além
de desenvolver um algoritmo para gerar todos os grafos threshold que satisfazem essa propriedade.

Palavras-chave. Grafo Threshold, Matriz Laplaciana, Autovetores, Autobase Simplesmente Es-
truturada

1 Introdução
Considere G = (V,E) um grafo simples com conjunto de vértices V = {1, . . . , n} e conjunto de

arestas E tal que |E| = m. O grau de um vértice i de G é o número arestas incidentes ao vértice i
e é denotado por di. Escrevemos L(G) = D(G)−A(G) para a matriz laplaciana de G, onde A(G)
é a matriz de adjacência e D(G) é a matriz diagonal dos graus dos vértices de G. Os autovalores
de L(G) são ordenados como µ1 ≥ · · · ≥ µn−1 ≥ µn = 0 e os autovetores correspondentes são
x1, . . . ,xn. Uma autobase de L(G) é uma base de Rn composta de autovetores de L(G) e uma
base é simplesmente estruturada se consiste de vetores com entradas somente em {−1, 0, 1}, [7].
Denotamos o autoespaço associado com um autovalor µ of L(G) por

EL(µ) = {x ∈ Rn, x ̸= 0 : L(G)x = µx}.

Dizemos que EL(µ) é simplesmente estruturado se admite uma base simplesmente estruturada
e um grafo G é simplesmente estruturado se L(G) possui uma autobase simplesmente estruturada,
[1, 3, 6]. Nosso interesse aqui é determinar os grafos thresholds que são simplesmente estruturados.
Dentre as várias definições e teoremas de caracterização de grafos thresholds (como pode ser visto
em [5]), utilizamos a caracterização por uma sequência binária.

Definição 1.1. Dada uma sequência {bi} de 0′s e 1′s com n elementos, o grafo threshold associado
com a sequência binária {bi} é o grafo G com n vértices construído recursivamente, começando
com um grafo vazio, e para i = 1, . . . , n

(i) adicione o vértice isolado i se bi = 0,

(ii) adicione o vértice i adjacente a todos os vértices com rótulo menor que i se bi = 1.

Um vértice i é um vértice isolado se bi = 0 e um vértice dominante se bi = 1. Claramente, G
é conexo se, e somente se, bn = 1. Ainda, a sequência binária b = (0, b2, . . . , bn−1, 1) de um grafo
threshold conexo G com pode ser escrita de forma compacta como b = 0s11t1 · · · 0sk1tk , onde 0si é
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uma abreviação para si ≥ 1 zeros consecutivos e 1ti é uma abreviação para ti ≥ 1 uns consecutivos.

Como n =

k∑
i=1

(si+ ti), isso assegura que 1 ≤ k ≤ ⌊n2 ⌋. Podemos particionar o conjunto de vértices

como V (G) = U1 ∪ V1 ∪ . . . ∪ Uk ∪ Vk, onde o conjunto Ui consiste do i-ésimo grupo de vértices
isolados consecutivos na construção de G de modo que |Ui| = si, and similarmente, Vi consiste do
i-ésimo grupo de vértices dominantes na construção de G, com |Vi| = ti. Se s1 ≥ 2, então a partição
de grau de G é dada por {U1, V1, . . . , Uk, Vk}. Caso contrário, se s1 = 1 então a partição de grau
torna-se {U1 ∪ V1, U2, V2, . . . , Uk, Vk}. Em ambos os casos, cada subconjunto Ui é um conjunto
independente e cada subconjunto Vi é uma clique [2]. A Figura 1 ilustra a partição de grau de um
grafo threshold; uma linha entre Ui e Vj indica que todos os vértices em Ui são adjacentes a todos
os vértices em Vj , e o retângulo indica que V1 ∪ · · · ∪ Vk é uma clique.

Figura 1: Estrutura global de um grafo threshold com sequência binária b = 0s11t1 · · · 0sk1tk .
Cada vértice em Ui é adjacente a Vi ∪ · · · ∪ Vk, V1 ∪ · · · ∪ Vk é uma clique e

Ui ∪ · · · ∪ Uk é um conjunto independente. Fonte: o autor.

Seja Sn o grafo estrela com n vértices. Para 1 ≤ k < n, é fácil ver que cada xk satisfazendo

xk
i =

 1, se i < k + 1,
−k, se i = k + 1,
0, se k + 1 < i ≤ n,

(1)

e xn = (1, 1, . . . , 1)T são autovetores de L(Sn) associados com os autovalores 1, n e 0 de multipli-
cidades n− 2, 1 e 1, respectivamente. Em [4] (Teorema A), os autores provaram que L(G) e L(Sn)
compartilham os mesmos autovetores quando G é um grafo threshold com n vértices.

Teorema 1.1. (Teorema A, [4]) Seja G um grafo conexo com n vértices. Então, G é um grafo
threshold se, e somente se, {x1, . . . ,xn} é uma autobase para a matriz laplaciana de G.

2 Resultados Principais

Sob a hipótese de que G é threshold e simplesmente estruturado, provamos que os autoespaços
de L(G) devem ter uma dimensão mínima. Na Proposição 2.1 provamos que dim(EL(n)) ≥ ⌈n2 ⌉.

Proposição 2.1. Seja G um grafo threshold conexo com n vértices definido pela sequência binária
b = (b1, b2, . . . , bk, bk+1, . . . , bn−1, bn) e seja k ∈ {1, . . . , n− 1} tal que bk+1 = · · · = bn e bk ̸= bk+1.
Então, EL(n) é simplesmente estruturado se, e somente se, 1 ≤ k ≤ ⌊n2 ⌋.
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Da Proposição 2.1, concluímos que o número mínimo de vetores na base de EL(n) é
⌈
n
2

⌉
.

Assumindo que G é um grafo threshold conexo com sequência binária tal que bk+1 = · · · = bn = 1
and bk = 0, para algum k ∈ {2, . . . , n− 1}, sempre obtemos que n− k é um autovalor de L(G). Na
Proposição 2.2, provamos que dim(EL(n− k)) ≥ ⌈k2 ⌉.

Proposição 2.2. Seja G um grafo threshold conexo com n vértices definido pela sequência binária
b = (b1, b2, b3, . . . , bk, bk+1, . . . , bn) tal que bk = 0 e bk+1 = · · · = bn = 1, para algum k ∈ {1, . . . , n−
1}. Seja l ∈ {2, . . . , k − 1} tal que bl+1 = · · · = bk e bl ̸= bl+1. Então, EL(n − k) é simplesmente
estruturado se, e somente se, 2 ≤ l ≤ ⌊k2 ⌋.

A Proposição 2.2 implica que o número mínimo de vetores na base de EL(n− k) é
⌈
k
2

⌉
. Assu-

mindo que G é um grafo threshold conexo com n vértices e sequência binária

b = (b1, b2, . . . , bl−1, bl, bl+1, . . . , bk, bk+1, . . . , bn)

tal que bl = 1, bl+1 = · · · = bk = 0 e bk+1 = · · · = bn = 1, para algum k ∈ {1, . . . , ⌊n2 ⌋} e
l ∈ {2, . . . , ⌊k2 ⌋}, sempre temos que EL(n) e EL(n− k) são simplesmente estruturados, independen-
temente do que acontece nas posições b1, . . . , bl−1 da sequência binária. Portanto, as Proposições
2.1 e 2.2 fornecem um importante ponto de partida para determinar os grafos threshold conexos
que são simplesmente estruturados. A partir destes resultados temos uma caracterização dos grafos
threshold que são simplesmente estruturados. Antes de enunciarmos o teorema precisamos definir
conceitos preliminares.

Seja P = [s1, t1, . . . , sk, tk] uma partição crescente do inteiro n com 2k partes, tal que cada
parte si e ti, para i = 1, . . . , k, foi obtida pela aplicação recursiva das ideias das Proposições 2.1 e
2.2. O maior valor possível que k pode assumir é

⌊
⌊log2(n)⌋+1

2

⌋
, e esse valor é obtido uma vez que

podemos escrever

n =
⌈n
2

⌉
+
⌈ n

22

⌉
+

⌈ n

23

⌉
+
⌈ n

24

⌉
+ · · ·+

⌈ n

22m−1

⌉
+

⌊ n

22m−1

⌋
onde

⌊
n

22m−1

⌋
é o menor valor inteiro possível maior ou igual a 1.

O próximo teorema caracteriza quando um grafo threshold conexo de uma dada ordem n é
simplesmente estruturado.

Teorema 2.1. Um grafo threshold G com n vértices é simplesmente estruturado se, e somente
se, a sequência binária que define G está associada a uma partição P = [s1, t1, . . . , sk, tk] tal que
k = {1, . . . ,

⌊
⌊log2(n)⌋+1

2

⌋
} e cada uma das partes si e ti de P , para i = 1, . . . , k, satisfaz⌈

n−
∑k

l=i+1(sl + tl)

2

⌉
≤ ti ≤ n−

k∑
l=i+1

(sl + tl)− 22i−2, (2)

⌈
n− ti −

∑k
l=i+1(sl + tl)

2

⌉
≤ si ≤ n− ti −

k∑
l=i+1

(sl + tl)− 22i−3, (3)

s1 = n− t1 −
k∑

l=2

(sl + tl) (4)

3 Algoritmo
Os resultados da Seção 2 motivaram o desenvolvimento de um algoritmo, dividido em quatro

partes, para determinar todos os grafos thresholds conexos com uma dada ordem n.
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O Algoritmo 1 gera todas as partições possíveis de um inteiro n (a ordem do grafo threshold).

Algoritmo 1: Dados os inteiros positivos n e k, seja l uma lista de números inteiros positivos
de comprimento j tal que 0 ≤ j ≤ 2k − 1. Se j = 0, então l é a lista vazia. A soma dos
elementos da lista l será denotada por sum. O Algoritmo 1 define as partes si ou ti da partição
P = [s1, t1, . . . , sk, tk] do inteiro n, para algum i = 1, . . . , k, da seguinte forma:

• Se j = 2q com q = 0, . . . , k − 1, então determinamos uma lista L que começa em tk−q
min =⌈

n−sum
2

⌉
e termina em tk−q

max = n− sum− 22(k−q)−2.

• Se j = 2q + 1 com q = 0, . . . , k − 2, então determinamos uma lista L que começa em
sk−q
min =

⌈
n−sum

2

⌉
e termina em sk−q

max = n− sum− 22(k−q)−3.

• Se j = 2(k− 1) + 1, então determinamos uma lista L com um único elemento s1 = n− sum.

Algoritmo 1 - Define as partes de P
Entrada: n, k, l (lista)
Saída: Lista L

1. j ← len(l) // len(l) é o comprimento de l

2. sum←
∑

(l) //
∑

(l) é a soma dos elementos de l

3. se j é par então

4. q ← j
2

5. tmin ←
⌈
n−sum

2

⌉
6. tmax ← n− sum− 22(k−q)−2

7. L← [tmin : tmax] // lista crescente que começa em tmin

e termina em tmax

8. senão se j < 2k − 1 então

9. q ← j−1
2

10. smin ←
⌈
n−sum

2

⌉
11. smax ← n− sum− 22(k−q)−3

12. L← [smin : smax] // lista crescente que começa em smin

e termina em smax

13. senão
14. L← [n− sum]
15. fim se

Algoritmo 2: Dados os inteiros positivos n e k, seja l uma lista de números inteiros positivos
de comprimento j tal que 0 ≤ j ≤ 2k e seja Pk conjunto. O Algoritmo 2 constrói as partições
P = [s1, t1, . . . , sk, tk] do inteiro n da seguinte forma:

• Se j = 2k, então adicionamos a lista l ao conjunto P .

• Se 0 ≤ j ≤ 2k − 1, aplique recursivamente os Algoritmos 1 e 2 até obter uma lista l de
comprimento 2k.
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Algoritmo 2 - Constrói as partições P de comprimento 2k para um dado k

Entrada: n, k, l (lista), Pk = ∅
Saída: Conjunto de partições Pk

1. j ← len(l) // len(l) é o comprimento de l

2. se j = 2k então

3. Pk ← Pk ∪ l // adicione a reversa de l ao conjunto Pk

4. retorne
5. senão
6. J ← Algoritmo 1(n, k, l)
7. para i em J faça
8. Algoritmo 2(n, k, l ∪ i,Pk) // aplique recursivamente o Algoritmo 2

para n, k, l ∪ i,Pk, onde l ∪ i
indica que adicionamos i à lista l

9. fim para
10. fim se

Algoritmo 3: Dado o inteiro positivo n, seja m =
⌊
⌊log2(n)⌋+1

2

⌋
. O Algoritmo 3 constrói todas as

partições P = [s1, t1, . . . , sk, tk] do inteiro n, para todo k = 1, . . . ,m, da seguinte forma:

Algoritmo 3 - Constrói todas as partições P , para todo k = 1, . . . ,m

Entrada: n
Saída: Conjunto de partições P

1. m←
⌊
⌊log2(n)⌋+1

2

⌋
// número máximo de pares (si, ti)

2. P ← ∅ // inicializa o conjunto de partições
3. para cada k = 1, . . . ,m faça
4. Pk ← ∅ // conjunto de partições de comprimento 2k
5. l← [ ] // lista vazia
6. Algoritmo 2(n, k, l,Pk) // gera recursivamente todas as partições

de comprimento 2k
7. P ← P ∪ Pk // adiciona as partições geradas pelo

Algoritmo 2 ao conjunto de partições P
8. fim para

Algoritmo 4: Consiste em gerar a sequência binária de todos os grafos threshold que são sim-
plesmente estruturados a partir das partições obtidas do Algoritmo 3. Para cada partição P ∈ P,
construímos a sequência binária correspondente b, ou seja, se P = [s1, t1, . . . , sk, tk], então para cada
i ∈ {1, . . . , 2k}, temos que bA0+1 = · · · = bA0+s(q+1)

é igual a 0 se i é ímpar e bA1+1 = · · · = bA1+tq é
igual a 1 se i é par, respectivamente, onde q = ⌊ i2⌋, A0 =

∑q
j=1(sj + tj) e A1 =

∑q−1
j=1(sj + tj)+sq.

Como o número de elementos em cada uma das partes si e ti, para i ∈ {1, . . . , 2k}, foi obtido
usando o Teorema 2.1, podemos garantir uma base simplesmente estruturada para o autoespaço
associado a cada autovalor do grafo. Portanto, os grafos threshold definidos por essas sequências
binárias são simplesmente estruturados. O Algoritmo 4 é apresentado abaixo.
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Algoritmo 4 - Algoritmo para determinar grafos threshold que são simples-
mente estruturados
Entrada: n (ordem do grafo)
Saída: Lista BS de sequências binárias

1. BS ← ∅ // inicializa a lista de sequências binárias

2. P ← Algoritmo 3(n) // obtém as partições de n

3. para cada P ∈ P faça

4. b← ∅ // inicializa sequência binária

5. para cada i = 1, . . . , len(P ) faça
6. q ← ⌊ i2⌋
7. A0 ←

∑q
j=1(sj + tj)

8. A1 ←
∑q−1

j=1(sj + tj) + sq

9. se i é ímpar então

10. bA0+1 = · · · = bA0+s(q+1)
= 0 // adicione sq+1 zeros a b começando no

índice A0 + 1
11. senão

12. bA1+1 = · · · = bA1+tq = 1 // adicione tq uns a b começando no
índice A1 + 1

13. fim se
14. fim para

15. BS ← BS ∪ b // adicione b à lista BS

16. fim para

4 Considerações Finais
Neste trabalho caracterizamos os grafos threshold conexo G com n vértices que são simplesmente

estruturados. Além disso, desenvolvemos um algoritmo para gerar todos os grafos threshold conexos
que são simplesmente estruturados para dada ordem n. Alguns dos grafos obtidos pelo Algoritmo 4
satisfaz a propriedade de que a base de autovetores da matriz laplaciana admite uma ordenação tal
que vetores não consecutivos sejam ortogonais, os quais chamamos de grafos threshold fracamente
Hadamard diagonalizáveis (WHD). Em [1], os autores levantaram o problema de encontrar quais
cografos são WHD. Como qualquer grafo threshold é um cografo, caracterizamos também todos
os grafos threshold com n vértices que são WHD. Isso oferece uma resposta parcial ao problema
proposto em [1] sobre a determinação de quais cografos são WHD.
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