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Resumo. A determinacao de k caminhos minimos disjuntos (CMDs) em uma rede de fluxo multi-
estado (RFM) desempenha um papel fundamental na garantia da confiabilidade e disponibilidade
de sistemas reais, como telecomunicagoes, transporte e redes de distribuicao. Embora estudos ante-
riores tenham se concentrado na identificacdo do nimero méaximo de CMDs entre dois n6s em um
grafo, a confiabilidade dos caminhos selecionados em uma RFM tem sido pouco explorada. Neste
trabalho, introduzimos o problema de determinar os k& CMDs mais confidveis capazes de transmi-
tir d unidades de fluxo de uma fonte a um destino dentro de 71" unidades de tempo. Além disso,
propomos um algoritmo para sua resolugdo e demonstramos sua correcao.
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1 Introducao

Uma rede de fluxo multiestado (RFM) é um grafo direcionado ou néo direcionado no qual as
capacidades dos arcos assumem valores aleatorios discretos de um conjunto predefinido, seguindo
uma distribui¢do de probabilidade. Os nés podem ser deterministicos (totalmente confiaveis) ou
exibir estados variaveis como os arcos, levando a sistemas multiestado [2, 3]. No entanto, um no
nao confiavel pode ser substituido por dois nos totalmente confidveis (deterministicos) conectados
por um tnico arco ndo confiavel [7]. Consequentemente, a maioria dos estudos se concentra em
RFMs com nos totalmente confidveis. Muitos sistemas do mundo real, incluindo redes de teleco-
municagoes, transporte e logistica, podem ser modelados como RFMs [4, 10, 14, 15, 20, 21].

Estendendo o problema do caminho mais rapido para a confiabilidade do sistema, o problema
da confiabilidade do caminho mais rapido foi introduzido pela primeira vez em [13] e tem sido
amplamente estudado desde entéao [3]. Este problema foi posteriormente estendido para considerar
dois ou mais caminhos minimos disjuntos (CMDs) [5, 6]. Neste contexto, um caminho é uma
sequéncia de arcos consecutivos conectando um né de origem a um né de destino, enquanto um
caminho minimo (CM) é um caminho livre de ciclos. Dois caminhos sdo disjuntos (arcos-disjuntos)
se nao compartilharem arcos comuns, embora possam ter nés comuns.

Apesar da extensa pesquisa sobre a confiabilidade do caminho mais réapido, pouca atengao tem
sido dada & identificagdo dos CMs mais confiaveis [3]. Enquanto isso, os problemas de determinar o
nimero maximo de CMDs ou identificar K CMDs em um grafo dado tém sido amplamente estudados
por décadas devido a sua importancia na robustez e eficiéncia da rede [12, 16, 18, 19]. No entanto,
poucos estudos abordaram a confiabilidade de & CMDs [5], e, até onde sabemos, nenhum trabalho
anterior se concentrou em determinar os kK CMDs mais confidveis em uma RFM. Para preencher
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Figura 1: Uma rede de referéncia com nove arestas e seis nos. Fonte: Forghani-elahabad et al.[4].

essa lacuna, iniciamos o estudo deste problema para dois CMDs em [8] e o estendemos neste
trabalho para o caso geral de k¥ CMDs.

O restante deste artigo esté estruturado da seguinte forma. A Se¢ao 2 introduz a notacao,
as suposigoes e os preliminares necessarios. A Segao 3 apresenta uma investigacao detalhada do
problema juntamente com o algoritmo proposto. Finalmente, a Se¢ao 4 conclui o estudo.

2 Preliminares

Denotamos uma rede de fluxo multiestado (RFM) como G(N, A, M,L). Nessa rede, N =
{1,2,...,n} representa o conjunto de nds, e A = {a1,as,...,a,,} representa o conjunto de
arcos (arestas). Assim, n é o namero total de n6s e m o namero total de arcos. O vetor
M = (My,...,M,,) especifica as capacidades méaximas dos arcos, onde M; é a capacidade ma-
xima do arco a;, para i = 1,...,m. Similarmente, o vetor L = (l1,...,l,,) indica os tempos de
espera nos arcos. Além disso, os ndés 1 e n representam, respectivamente, o n6 de origem e o n6 de
destino.

Definimos o estado operacional da rede através de um vetor X = (1,22, -+ ,Zm), onde cada
componente x; representa a capacidade atual do arco a;. FEssa capacidade varia aleatoriamente
entre zero e M;, assumindo valores inteiros, para cada i de 1 a m. E importante notar que o
vetor M em si representa um possivel estado do sistema, especificamente o estado de capacidade
méaxima. O tempo méaximo permitido para a transmissao de dados é denotado por 7. A demanda,
representada por d, é um valor inteiro nao negativo que especifica a quantidade minima de fluxo a
ser transferida do 1 para o noé n.

Seja h o namero total de caminhos minimos (CMs) existentes na rede, representados por
Py, Py, ..., Py, e f o nimero maximo de caminhos minimos disjuntos (CMDs) entre os nos 1 e
n na rede. Observe que o nimero f pode ser calculado de forma eficiente [11], e apresentamos
uma abordagem para isso na Secao 3.4. Considerando a RFM da Figura 1, observe que existem
h =9 CMs e, no maximo, f = 3 CMDs entre os nés 1 e 5. Um conjunto possivel de trés CMDs
é formado pelos caminhos P, = {a1,a5}, Py ={as,as}, Pr={az,ar}. Observe, também, que,
se considerarmos P; = {a1, a4, ag, ar}, ndo é possivel encontrar mais dois CMs que, junto com esse
caminho, formem um conjunto de trés CMDs.

Seja k < f o niimero de CMDs requeridos para transmitir d unidades de dados dentro de 1" uni-
dades de tempo. Denotamos por W* = {yF % ... ,w(]ﬁk} o conjunto de todos os possiveis subcon-
juntos de k CMDs, onde wf representa um conjunto de k CMDs, parai = 1,2,..., 0. Por exemplo,
na Figura 1, temos os seguintes CMs P; = {a1, a5}, P> = {a1,a4,0a8}, Ps = {a1,a4,06,a7}, Py =
{ag,ag}, P5 = {ag,a4,a5}, P6 = {ag,aﬁ,a7}, P7 = {a2,a7}, Pg = {ag,ag,ag}, P9 = {ag,ag,a4,a5}
e assim, ¢7 = {P, Pi}, ¥3 = {P1, s}, ¢35 = {P1, P}, ¢7 = {P1, B}, ¥ = {P2, Bs}, v§ =
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{P2, Pr}, w? = {Ps, Py}, ¢§ = {Py, Pr}, ¢§ = {Py, P}, 7%0 = {P, Pr}, w%l = {P5, B}, e,
portanto, ha o3 = 11 conjuntos diferentes de dois CMDs.

Definimos um vetor D = (dy,da, .. .,d), no qual d; representa a quantidade de fluxo destinada
ao CM, P; no conjunto ¢¥, para j = 1,...,k ei = 1,...,04. Este vetor D, chamado de vetor
de politica, especifica a distribuicao do fluxo entre os £ CMDs, com o objetivo de transferir d
unidades de fluxo do n6 1 ao n6 n. Assim, devemos ter dy + --- + dp = d. A capacidade de
um CM é definida como a quantidade méaxima de fluxo que ele pode suportar simultaneamente.
Matematicamente, a capacidade do CM, P; sob o vetor de estado do sistema (VES) X é dada por
KP;j(X) =min{x;|a; € P;}, para todo j =1,2,--- , h.

Conforme estabelecido em trabalhos anteriores [1, 4, 9], o tempo de espera associado a um CM
¢ calculado pela soma dos tempos de espera de seus arcos constituintes. Assim, designando LP;
como o tempo de espera de P, temos LP; =3 ., p, li- Ao enviar d; unidades de fluxo do n6 1
até o né n por meio do caminho P;, sdo necessarias inicialmente L P; unidades de tempo para que o
fluxo percorra o caminho. A partir desse momento, K P;(X) unidades de fluxo podem ser recebidas
no noé de destino por unidade de tempo, onde K P;(X) representa a capacidade do caminho P; sob
X. Considerando que as capacidades e os fluxos enviados sao inteiros, o tempo total necesséario para

transmitir d; unidades de fluxo por meio de P}, sob X, é dado por {(d;, X, P;) = LP; + {%?X)—‘ .
J

Seja Cq;(P;) a confiabilidade do caminho P; para a transmissdo simultanea de d; unidades de

fluxo do n6 1 ao n6 n. A confiabilidade, em termos gerais, representa a probabilidade de sucesso.

Assim, Cy;(P;) corresponde a probabilidade de que a capacidade do caminho P; seja ao menos d.

Considerando a definicao acima de capacidade de um caminho, tem-se:

Coyi(P)) = [ Pr(zi > d)). (1)

a; EP;

Neste estudo, adotamos as seguintes suposi¢oes, consistentes com a literatura [3, 6]:

—

. Todos os noés sao considerados perfeitamente confiaveis.

2. As capacidades dos arcos seguem distribuigoes de probabilidade conhecidas.
3. As capacidades dos arcos sao estatisticamente independentes entre si.
4

. O fluxo vai da origem ao destino por até k CMDs, respeitando a conservacao do fluxo.

3 Bloco Principal

O problema principal é encontrar os & CMDs mais confiaveis para transmitir d unidade de fluxo
dentro de T unidade de tempo. Entao, temos os seguintes passos:

1. Encontrar todos os CM da rede dada.
Determinar todos os conjuntos de k¥ CMDs, se houver algum.

Verificar quais conjuntos do passo 2 sdo solugoes viaveis.

Ll

Determinar o conjunto mais confiavel.
Existem varios algoritmos para o primeiro passo [3], porém os passos 2 e 3 sdo desafiadores. Vamos

discutir algumas possiveis solugoes nesta segao, com base nas quais propomos um algoritmo para
resolver o problema principal.
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Figura 2: O grafo conflito correspondente & rede da Figura 1. Fonte: Os Autores.

3.1 Determinacao de k CMDs

Lembrando que existem, no total, h CMs e, no maximo, f CMDs na rede, primeiramente
verificamos se k < f. Se nao, a resposta é simplesmente que nao ha k¥ CMDs. Se sim, uma solugao
direta seria listar todas as (2) possibilidades de escolher k CMs entre os h CMs e depois verificar
quais conjuntos formam um conjunto de CMDs. Porém, mesmo utilizando técnicas combinatoérias,
o custo computacional dessa abordagem é muito alto, especialmente quando h é suficientemente
grande. Aqui, discutimos duas solugdes que sdo mais eficientes do que essa abordagem direta.

1. Buscar os conjuntos independentes em um grafo de conflito: Nesta abordagem,
construimos uma nova rede com h nds, onde cada né representa um CM da rede original. Adi-
cionamos uma aresta entre dois nos nessa nova rede se a intersecao dos CMs associados for nao
vazia. Em seguida, buscamos os conjuntos independentes de nés na nova rede, ou seja, procuramos
todos os conjuntos de k£ nés em que nao ha nenhuma aresta entre os nés de cada conjunto. Esses
conjuntos representam os conjuntos de CMDs na rede original. Observamos que o problema de
encontrar conjuntos independentes em um grafo é bem estudado [17]. Uma abordagem direta para
encontrar todos os conjuntos independentes de k£ nos consiste em comegar com um né qualquer,
remover todos os nés conectados a ele por um arco (aresta), escolher um novo no entre os restantes
e continuar esse processo até formar um conjunto de k£ nés. Para ilustrar essa ideia, a Figura 2
representa o grafo de conflito correspondente aos CMs da rede dada na Figura 1, lembrando que
essa rede contém nove CMs.

2. Modelagem como uma Programacao Linear Inteira: Podemos definir as varidveis
de decisao z; = 1 se o CM P; for escolhido e z; = 0 caso contrario, para j = 1,...,h. Além
disso, definimos a matriz B,,x, com b;; = 1 se o arco a; pertence a P; e b;; = 0 caso contréario,
parai = 1,...,m e j = 1,...,h. Dessa forma, é necessario determinar todas as solugoes bina-
rias z = (21, 22, ..., 2r) do seguinte problema, para o qual diversos métodos foram propostos na
literatura [11].

(2)

Observamos que a Eq. (i) no sistema 2 garante que tenhamos exatamente k componentes nao nulos
em cada solugao z = (21, 22, . - ., 21 ), Ou seja, que exatamente k CMs sejam escolhidos. Ja a Eq. (i7)
garante que os CMs escolhidos sejam disjuntos, pois nao compartilham nenhum arco em comum.
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3.2 Verificacao dos CMDs escolhidos

Seja Wk = {ypf b ... ,zpi:k} o conjunto de todos os conjuntos de k CMDs escolhidos. Agora,
precisamos verificar quais desses conjuntos de k¥ CMDs permitem o envio de d unidades de fluxo
dentro de T unidades de tempo. O resultado a seguir fornece um limite superior para a quantidade
de fluxo que pode ser transmitida através de P; dentro de 7" unidades de tempo.

Lema 3.1. [8/ A quantidade mdzima de dados que pode ser enviada por P; dentro de T unidades
de tempo é v; = KP;(M)(T — LP;), onde KP;(M) € a capacidade mdzima de P; e LP; é o tempo
de espera de Pj.

Portanto, considerando ¢ = {P.1, Py, ..., P.;} um conjunto de k& CMDs escolhidos, se ti-
k ~ ~ ) . A .
vermos » =1 < d, entao a solucao através desse conjunto é inviavel, e ele deve ser removido.
Observamos que, se Z?Zlvﬁ > d, ent@o qualquer vetor D = (dy,...,dy) com 0 < d; < v; e
di +---+di = d é um vetor de politica viavel. Na proxima segao, investigamos como escolher o
conjunto mais confidvel dentre os CMDs selecionados.

3.3 O conjunto dos CMDs mais confidveis

Eq. (1) mostra que a confiabilidade de um CM depende do fluxo transmitido e das capacidades
atuais dos arcos do caminho. Como essas capacidades sdo ndo negativas, a confiabilidade de um
caminho ao transmitir d = 0 unidades é igual a 1. Assim, para calcular a confiabilidade de um
conjunto de CMs, é necessério identificar quais caminhos serao usados. Para isso, definimos a; =1
se d; > 0 e a; = 0 caso contrério, para j =1,...,k.

Logo, a confiabilidade do conjunto z/}f ={P.1,Pra,..., P} ao transmitir d unidades de fluxo
sob a politica D = (dy,...,dy) é dada por

k
Rp () = [ [ cuCa, (Pr). (3)
t=1

Portanto, considerando ©F (d) como o conjunto de todos os vetores de politica viaveis correspon-
dentes ao conjunto ¥* dos CMDs escolhidos, podemos calcular a confiabilidade de ¥ para todos
os vetores em ©F(d) usando a Eq. (3) e considerar o maior valor obtido como a confiabilidade do
conjunto ¥ para transmitir d unidades de fluxo dentro de 7" unidades de tempo, salvando o vetor
de politica correspondente.

Assim, apos calcular a confiabilidade de todos os conjuntos nao removidos na se¢do anterior,
escolhemos aquele com a maior confiabilidade como o conjunto de ¥ CMDs mais confiaveis da rede
dada. Agora, podemos escrever o algoritmo completo.

3.4 O algoritmo proposto

Observamos que é recomendavel verificar a existéncia de k& CMDs na rede antes de iniciar o
processo de sua determinacao. Para isso, é necessério calcular o nimero méximo de CMDs na
rede, denotado por f. Diversas técnicas podem ser utilizadas para essa estimativa, dentre as quais
adotamos a abordagem baseada no calculo do fluxo méximo em uma rede onde todos os arcos
ativos possuem capacidade igual a 1 [11, 16]. De fato, ao atribuir capacidade 1 a cada arco com
capacidade positiva, garantimos que ele possa ser utilizado em apenas um CMD. Dessa forma, o
valor do fluxo méximo obtido nesse modelo corresponde ao nimero maximo de CMDs na rede, ou
seja, f. Assim, se k > f, concluimos que nao ha uma solucao viavel para o problema. Com essa
verificagao prévia estabelecida, podemos agora descrever o algoritmo proposto.
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Algoritmo 1

Entrada: G(N,A,M,L), d, T e o conjunto de todos os CMs Py, ..., Py.

Saida: Os k CMDs mais confidveis da rede.

Passo 0. Calcule f utilizando o algoritmo de fluxo méaximo na rede modificada, definindo a
capacidade de cada arco ativo para um. Se k > f, pare e informe que nao existem k CMDs na
rede dada.

Passo 1. Determine UF = {y¥ ok . ,1/1’;k}, o conjunto de todos os conjuntos possiveis de k
CMDs, utilizando as abordagens descritas na Segao 3.1.

Passo 2. Remova os conjuntos de kK CMDs pelos quais é impossivel transmitir d unidades de
fluxo dentro de T unidades de tempo, utilizando a abordagem descrita na Segao 3.2. Se todos os
conjuntos forem removidos, pare e retorne que nao hé solugao viavel.

Passo 3. Calcule a confiabilidade dos conjuntos nao removidos conforme descrito na Secao 3.3
e escolha o conjunto mais confiavel. Pare.

De acordo com todas as discussoes nas se¢oes anteriores, o seguinte resultado é imediato.

Teorema 3.1. O algoritmo proposto determina corretamente o conjunto dos k CMDs mais con-
fidveis na rede dada.

4 Consideracoes finais

Neste trabalho, apresentamos o problema de encontrar os k& CMDs mais confidveis em uma
rede de multiestado para transmitir d unidades de fluxo do n6 fonte ao n6é destino dentro de T'
unidades de tempo. Investigamos detalhadamente cada etapa do problema e descrevemos algumas
abordagens para cada passo. Com base nisso, propusemos um algoritmo para resolvé-lo.

No entanto, ha espaco para melhorias no algoritmo. Por exemplo, as abordagens utilizadas nos
Passos 0 e 1 podem ser substituidas por alternativas mais eficientes, caso existam. Ademais, se for
possivel descartar alguns CMs que nao fazem parte da solugao logo no inicio do processo, o esforgo
para encontrar todos os conjuntos possiveis de k CMDs sera significativamente reduzido. Além
disso, ao reduzir o niimero de vetores de politicas viaveis para cada conjunto de CMDs identificado
— desde que o melhor vetor de politica correspondente seja mantido — o desempenho do algoritmo
pode ser aprimorado. Essas possibilidades serao exploradas em trabalhos futuros.
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