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Resumo. A determinação de k caminhos mínimos disjuntos (CMDs) em uma rede de fluxo multi-
estado (RFM) desempenha um papel fundamental na garantia da confiabilidade e disponibilidade
de sistemas reais, como telecomunicações, transporte e redes de distribuição. Embora estudos ante-
riores tenham se concentrado na identificação do número máximo de CMDs entre dois nós em um
grafo, a confiabilidade dos caminhos selecionados em uma RFM tem sido pouco explorada. Neste
trabalho, introduzimos o problema de determinar os k CMDs mais confiáveis capazes de transmi-
tir d unidades de fluxo de uma fonte a um destino dentro de T unidades de tempo. Além disso,
propomos um algoritmo para sua resolução e demonstramos sua correção.
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1 Introdução

Uma rede de fluxo multiestado (RFM) é um grafo direcionado ou não direcionado no qual as
capacidades dos arcos assumem valores aleatórios discretos de um conjunto predefinido, seguindo
uma distribuição de probabilidade. Os nós podem ser determinísticos (totalmente confiáveis) ou
exibir estados variáveis como os arcos, levando a sistemas multiestado [2, 3]. No entanto, um nó
não confiável pode ser substituído por dois nós totalmente confiáveis (determinísticos) conectados
por um único arco não confiável [7]. Consequentemente, a maioria dos estudos se concentra em
RFMs com nós totalmente confiáveis. Muitos sistemas do mundo real, incluindo redes de teleco-
municações, transporte e logística, podem ser modelados como RFMs [4, 10, 14, 15, 20, 21].

Estendendo o problema do caminho mais rápido para a confiabilidade do sistema, o problema
da confiabilidade do caminho mais rápido foi introduzido pela primeira vez em [13] e tem sido
amplamente estudado desde então [3]. Este problema foi posteriormente estendido para considerar
dois ou mais caminhos mínimos disjuntos (CMDs) [5, 6]. Neste contexto, um caminho é uma
sequência de arcos consecutivos conectando um nó de origem a um nó de destino, enquanto um
caminho mínimo (CM) é um caminho livre de ciclos. Dois caminhos são disjuntos (arcos-disjuntos)
se não compartilharem arcos comuns, embora possam ter nós comuns.

Apesar da extensa pesquisa sobre a confiabilidade do caminho mais rápido, pouca atenção tem
sido dada à identificação dos CMs mais confiáveis [3]. Enquanto isso, os problemas de determinar o
número máximo de CMDs ou identificar k CMDs em um grafo dado têm sido amplamente estudados
por décadas devido à sua importância na robustez e eficiência da rede [12, 16, 18, 19]. No entanto,
poucos estudos abordaram a confiabilidade de k CMDs [5], e, até onde sabemos, nenhum trabalho
anterior se concentrou em determinar os k CMDs mais confiáveis em uma RFM. Para preencher
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Figura 1: Uma rede de referência com nove arestas e seis nós. Fonte: Forghani-elahabad et al.[4].

essa lacuna, iniciamos o estudo deste problema para dois CMDs em [8] e o estendemos neste
trabalho para o caso geral de k CMDs.

O restante deste artigo está estruturado da seguinte forma. A Seção 2 introduz a notação,
as suposições e os preliminares necessários. A Seção 3 apresenta uma investigação detalhada do
problema juntamente com o algoritmo proposto. Finalmente, a Seção 4 conclui o estudo.

2 Preliminares

Denotamos uma rede de fluxo multiestado (RFM) como G(N,A,M,L). Nessa rede, N =
{1, 2, . . . , n} representa o conjunto de nós, e A = {a1, a2, . . . , am} representa o conjunto de
arcos (arestas). Assim, n é o número total de nós e m o número total de arcos. O vetor
M = (M1, . . . ,Mm) especifica as capacidades máximas dos arcos, onde Mi é a capacidade má-
xima do arco ai, para i = 1, . . . ,m. Similarmente, o vetor L = (l1, . . . , lm) indica os tempos de
espera nos arcos. Além disso, os nós 1 e n representam, respectivamente, o nó de origem e o nó de
destino.

Definimos o estado operacional da rede através de um vetor X = (x1, x2, · · · , xm), onde cada
componente xi representa a capacidade atual do arco ai. Essa capacidade varia aleatoriamente
entre zero e Mi, assumindo valores inteiros, para cada i de 1 a m. É importante notar que o
vetor M em si representa um possível estado do sistema, especificamente o estado de capacidade
máxima. O tempo máximo permitido para a transmissão de dados é denotado por T . A demanda,
representada por d, é um valor inteiro não negativo que especifica a quantidade mínima de fluxo a
ser transferida do 1 para o nó n.

Seja h o número total de caminhos mínimos (CMs) existentes na rede, representados por
P1, P2, . . . , Ph, e f o número máximo de caminhos mínimos disjuntos (CMDs) entre os nós 1 e
n na rede. Observe que o número f pode ser calculado de forma eficiente [11], e apresentamos
uma abordagem para isso na Seção 3.4. Considerando a RFM da Figura 1, observe que existem
h = 9 CMs e, no máximo, f = 3 CMDs entre os nós 1 e 5. Um conjunto possível de três CMDs
é formado pelos caminhos P1 = {a1, a5}, P4 = {a3, a8}, P7 = {a2, a7}. Observe, também, que,
se considerarmos P3 = {a1, a4, a6, a7}, não é possível encontrar mais dois CMs que, junto com esse
caminho, formem um conjunto de três CMDs.

Seja k ≤ f o número de CMDs requeridos para transmitir d unidades de dados dentro de T uni-
dades de tempo. Denotamos por Ψk = {ψk

1 , ψ
k
2 , . . . , ψ

k
σk
} o conjunto de todos os possíveis subcon-

juntos de k CMDs, onde ψk
i representa um conjunto de k CMDs, para i = 1, 2, . . . , σk. Por exemplo,

na Figura 1, temos os seguintes CMs P1 = {a1, a5}, P2 = {a1, a4, a8}, P3 = {a1, a4, a6, a7}, P4 =
{a3, a8}, P5 = {a3, a4, a5}, P6 = {a3, a6, a7}, P7 = {a2, a7}, P8 = {a2, a6, a8}, P9 = {a2, a6, a4, a5}
e assim, ψ2

1 = {P1, P4}, ψ2
2 = {P1, P6}, ψ2

3 = {P1, P7}, ψ2
4 = {P1, P8}, ψ2

5 = {P2, P6}, ψ2
6 =

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0275 010275-2 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0275


3

{P2, P7}, ψ2
7 = {P3, P4}, ψ2

8 = {P4, P7}, ψ2
9 = {P4, P9}, ψ2

10 = {P5, P7}, ψ2
11 = {P5, P8}, e,

portanto, há σ2 = 11 conjuntos diferentes de dois CMDs.
Definimos um vetor D = (d1, d2, . . . , dk), no qual dj representa a quantidade de fluxo destinada

ao CM, Pj no conjunto ψk
i , para j = 1, . . . , k e i = 1, . . . , σk. Este vetor D, chamado de vetor

de política, especifica a distribuição do fluxo entre os k CMDs, com o objetivo de transferir d
unidades de fluxo do nó 1 ao nó n. Assim, devemos ter d1 + · · · + dk = d. A capacidade de
um CM é definida como a quantidade máxima de fluxo que ele pode suportar simultaneamente.
Matematicamente, a capacidade do CM, Pj sob o vetor de estado do sistema (VES) X é dada por
KPj(X) = min{xi|ai ∈ Pj}, para todo j = 1, 2, · · · , h.

Conforme estabelecido em trabalhos anteriores [1, 4, 9], o tempo de espera associado a um CM
é calculado pela soma dos tempos de espera de seus arcos constituintes. Assim, designando LPj

como o tempo de espera de Pj , temos LPj =
∑

i: ai∈Pj
li. Ao enviar dj unidades de fluxo do nó 1

até o nó n por meio do caminho Pj , são necessárias inicialmente LPj unidades de tempo para que o
fluxo percorra o caminho. A partir desse momento, KPj(X) unidades de fluxo podem ser recebidas
no nó de destino por unidade de tempo, onde KPj(X) representa a capacidade do caminho Pj sob
X. Considerando que as capacidades e os fluxos enviados são inteiros, o tempo total necessário para
transmitir dj unidades de fluxo por meio de Pj , sob X, é dado por ξ(dj , X, Pj) = LPj +

⌈
dj

KPj(X)

⌉
.

Seja Cdj(Pj) a confiabilidade do caminho Pj para a transmissão simultânea de dj unidades de
fluxo do nó 1 ao nó n. A confiabilidade, em termos gerais, representa a probabilidade de sucesso.
Assim, Cdj(Pj) corresponde à probabilidade de que a capacidade do caminho Pj seja ao menos dj .
Considerando a definição acima de capacidade de um caminho, tem-se:

Cdj(Pj) =
∏

ai∈Pj

Pr(xi ≥ dj). (1)

Neste estudo, adotamos as seguintes suposições, consistentes com a literatura [3, 6]:

1. Todos os nós são considerados perfeitamente confiáveis.

2. As capacidades dos arcos seguem distribuições de probabilidade conhecidas.

3. As capacidades dos arcos são estatisticamente independentes entre si.

4. O fluxo vai da origem ao destino por até k CMDs, respeitando a conservação do fluxo.

3 Bloco Principal

O problema principal é encontrar os k CMDs mais confiáveis para transmitir d unidade de fluxo
dentro de T unidade de tempo. Então, temos os seguintes passos:

1. Encontrar todos os CM da rede dada.

2. Determinar todos os conjuntos de k CMDs, se houver algum.

3. Verificar quais conjuntos do passo 2 são soluções viáveis.

4. Determinar o conjunto mais confiável.

Existem vários algoritmos para o primeiro passo [3], porém os passos 2 e 3 são desafiadores. Vamos
discutir algumas possíveis soluções nesta seção, com base nas quais propomos um algoritmo para
resolver o problema principal.
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Figura 2: O grafo conflito correspondente à rede da Figura 1. Fonte: Os Autores.

3.1 Determinação de k CMDs

Lembrando que existem, no total, h CMs e, no máximo, f CMDs na rede, primeiramente
verificamos se k ≤ f . Se não, a resposta é simplesmente que não há k CMDs. Se sim, uma solução
direta seria listar todas as

(
h
k

)
possibilidades de escolher k CMs entre os h CMs e depois verificar

quais conjuntos formam um conjunto de CMDs. Porém, mesmo utilizando técnicas combinatórias,
o custo computacional dessa abordagem é muito alto, especialmente quando h é suficientemente
grande. Aqui, discutimos duas soluções que são mais eficientes do que essa abordagem direta.

1. Buscar os conjuntos independentes em um grafo de conflito: Nesta abordagem,
construímos uma nova rede com h nós, onde cada nó representa um CM da rede original. Adi-
cionamos uma aresta entre dois nós nessa nova rede se a interseção dos CMs associados for não
vazia. Em seguida, buscamos os conjuntos independentes de nós na nova rede, ou seja, procuramos
todos os conjuntos de k nós em que não há nenhuma aresta entre os nós de cada conjunto. Esses
conjuntos representam os conjuntos de CMDs na rede original. Observamos que o problema de
encontrar conjuntos independentes em um grafo é bem estudado [17]. Uma abordagem direta para
encontrar todos os conjuntos independentes de k nós consiste em começar com um nó qualquer,
remover todos os nós conectados a ele por um arco (aresta), escolher um novo nó entre os restantes
e continuar esse processo até formar um conjunto de k nós. Para ilustrar essa ideia, a Figura 2
representa o grafo de conflito correspondente aos CMs da rede dada na Figura 1, lembrando que
essa rede contém nove CMs.

2. Modelagem como uma Programação Linear Inteira: Podemos definir as variáveis
de decisão zj = 1 se o CM Pj for escolhido e zj = 0 caso contrário, para j = 1, . . . , h. Além
disso, definimos a matriz Bm×h com bij = 1 se o arco ai pertence a Pj e bij = 0 caso contrário,
para i = 1, . . . ,m e j = 1, . . . , h. Dessa forma, é necessário determinar todas as soluções biná-
rias z = (z1, z2, . . . , zh) do seguinte problema, para o qual diversos métodos foram propostos na
literatura [11]. (i)

∑h
j=1 zj = k

(ii)
∑h

j=1 bijzj ≤ 1, ∀i = 1, . . . ,m.
(2)

Observamos que a Eq. (i) no sistema 2 garante que tenhamos exatamente k componentes não nulos
em cada solução z = (z1, z2, . . . , zh), ou seja, que exatamente k CMs sejam escolhidos. Já a Eq. (ii)
garante que os CMs escolhidos sejam disjuntos, pois não compartilham nenhum arco em comum.
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3.2 Verificação dos CMDs escolhidos
Seja Ψk = {ψk

1 , ψ
k
2 , . . . , ψ

k
σk
} o conjunto de todos os conjuntos de k CMDs escolhidos. Agora,

precisamos verificar quais desses conjuntos de k CMDs permitem o envio de d unidades de fluxo
dentro de T unidades de tempo. O resultado a seguir fornece um limite superior para a quantidade
de fluxo que pode ser transmitida através de Pj dentro de T unidades de tempo.

Lema 3.1. [8] A quantidade máxima de dados que pode ser enviada por Pj dentro de T unidades
de tempo é γj = KPj(M)(T −LPj), onde KPj(M) é a capacidade máxima de Pj e LPj é o tempo
de espera de Pj.

Portanto, considerando ψk
r = {Pr1, Pr2, . . . , Prk} um conjunto de k CMDs escolhidos, se ti-

vermos
∑k

j=1 γrj < d, então a solução através desse conjunto é inviável, e ele deve ser removido.
Observamos que, se

∑k
j=1 γrj ≥ d, então qualquer vetor D = (d1, . . . , dk) com 0 ≤ dj ≤ γj e

d1 + · · · + dk = d é um vetor de política viável. Na próxima seção, investigamos como escolher o
conjunto mais confiável dentre os CMDs selecionados.

3.3 O conjunto dos CMDs mais confiáveis
Eq. (1) mostra que a confiabilidade de um CM depende do fluxo transmitido e das capacidades

atuais dos arcos do caminho. Como essas capacidades são não negativas, a confiabilidade de um
caminho ao transmitir d = 0 unidades é igual a 1. Assim, para calcular a confiabilidade de um
conjunto de CMs, é necessário identificar quais caminhos serão usados. Para isso, definimos αj = 1
se dj > 0 e αj = 0 caso contrário, para j = 1, . . . , k.

Logo, a confiabilidade do conjunto ψk
r = {Pr1, Pr2, . . . , Prk} ao transmitir d unidades de fluxo

sob a política D = (d1, . . . , dk) é dada por

RD(ψk
r ) =

k∏
t=1

αtCdt
(Prt). (3)

Portanto, considerando Θk
r (d) como o conjunto de todos os vetores de política viáveis correspon-

dentes ao conjunto ψk
r dos CMDs escolhidos, podemos calcular a confiabilidade de ψk

r para todos
os vetores em Θk

r (d) usando a Eq. (3) e considerar o maior valor obtido como a confiabilidade do
conjunto ψk

r para transmitir d unidades de fluxo dentro de T unidades de tempo, salvando o vetor
de política correspondente.

Assim, após calcular a confiabilidade de todos os conjuntos não removidos na seção anterior,
escolhemos aquele com a maior confiabilidade como o conjunto de k CMDs mais confiáveis da rede
dada. Agora, podemos escrever o algoritmo completo.

3.4 O algoritmo proposto
Observamos que é recomendável verificar a existência de k CMDs na rede antes de iniciar o

processo de sua determinação. Para isso, é necessário calcular o número máximo de CMDs na
rede, denotado por f . Diversas técnicas podem ser utilizadas para essa estimativa, dentre as quais
adotamos a abordagem baseada no cálculo do fluxo máximo em uma rede onde todos os arcos
ativos possuem capacidade igual a 1 [11, 16]. De fato, ao atribuir capacidade 1 a cada arco com
capacidade positiva, garantimos que ele possa ser utilizado em apenas um CMD. Dessa forma, o
valor do fluxo máximo obtido nesse modelo corresponde ao número máximo de CMDs na rede, ou
seja, f . Assim, se k > f , concluímos que não há uma solução viável para o problema. Com essa
verificação prévia estabelecida, podemos agora descrever o algoritmo proposto.
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Algoritmo 1
Entrada: G(N,A,M,L), d, T e o conjunto de todos os CMs P1, . . . , Ph.
Saída: Os k CMDs mais confiáveis da rede.
Passo 0. Calcule f utilizando o algoritmo de fluxo máximo na rede modificada, definindo a

capacidade de cada arco ativo para um. Se k > f , pare e informe que não existem k CMDs na
rede dada.

Passo 1. Determine Ψk = {ψk
1 , ψ

k
2 , . . . , ψ

k
σk
}, o conjunto de todos os conjuntos possíveis de k

CMDs, utilizando as abordagens descritas na Seção 3.1.
Passo 2. Remova os conjuntos de k CMDs pelos quais é impossível transmitir d unidades de

fluxo dentro de T unidades de tempo, utilizando a abordagem descrita na Seção 3.2. Se todos os
conjuntos forem removidos, pare e retorne que não há solução viável.

Passo 3. Calcule a confiabilidade dos conjuntos não removidos conforme descrito na Seção 3.3
e escolha o conjunto mais confiável. Pare.

De acordo com todas as discussões nas seções anteriores, o seguinte resultado é imediato.

Teorema 3.1. O algoritmo proposto determina corretamente o conjunto dos k CMDs mais con-
fiáveis na rede dada.

4 Considerações finais
Neste trabalho, apresentamos o problema de encontrar os k CMDs mais confiáveis em uma

rede de multiestado para transmitir d unidades de fluxo do nó fonte ao nó destino dentro de T
unidades de tempo. Investigamos detalhadamente cada etapa do problema e descrevemos algumas
abordagens para cada passo. Com base nisso, propusemos um algoritmo para resolvê-lo.

No entanto, há espaço para melhorias no algoritmo. Por exemplo, as abordagens utilizadas nos
Passos 0 e 1 podem ser substituídas por alternativas mais eficientes, caso existam. Ademais, se for
possível descartar alguns CMs que não fazem parte da solução logo no início do processo, o esforço
para encontrar todos os conjuntos possíveis de k CMDs será significativamente reduzido. Além
disso, ao reduzir o número de vetores de políticas viáveis para cada conjunto de CMDs identificado
— desde que o melhor vetor de política correspondente seja mantido — o desempenho do algoritmo
pode ser aprimorado. Essas possibilidades serão exploradas em trabalhos futuros.
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