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Abstract. An AVD-k-total coloring of a simple graph G is a mapping π : V (G)∪E(G) → {1, . . . , k},
with k ≥ 1 such that: for each pair of adjacent or incident elements x, y ∈ V (G)∪E(G), π(x) ̸= π(y);
and for each pair of adjacent vertices x, y ∈ V (G), sets {π(x)}∪{π(xv) | xv ∈ E(G) and v ∈ V (G)}
and {π(y)} ∪ {π(yv) | yv ∈ E(G) and v ∈ V (G)} are distinct. The AVD-total chromatic number,
denoted by χ′′

a(G) is the smallest k for which G admits an AVD-k-total-coloring. In 2005, Zhang et
al. conjectured that any graph G has χ′′

a(G) ≤ ∆+3, where ∆ is the maximum degree of G and this
conjecture is known as AVD-Total Coloring Conjecture (AVD-TCC). In this article, we determine
that the AVD-total chromatic number of two infinite families of 4-regular circulant graphs, we prove
that χ′′

a(Cn(a, b)) = 6, where n is even and a, b are both odd such that 1 ≤ a < b < ⌊n/2⌋, and
χ′′
a(Cn(1, k)) = 6, where n and ℓ = n

gcd(n,k)
are even.

Palavras-chave. Total Coloring, Adjacent-Vertex-Distinguishing, Circulant Graphs

1 Introduction
Let G = (V,E) be a simple connected graph and ∆ be the maximum degree of G, for most

definitions and notations in Graph Theory we consider [4]. A k-total coloring of G is an assignment
of k colors to the vertices and edges of G so that adjacent or incident elements have different colors.
The total chromatic number of G, denoted by χ′′(G), is the smallest k for which G has a k-total
coloring. Clearly, χ′′(G) ≥ ∆ + 1. The Total Coloring Conjecture (TCC) states that the total
chromatic number of any graph is at most ∆ + 2 [3, 22]. Graphs with χ′′(G) = ∆ + 1 are called
Type 1, and graphs with χ′′(G) = ∆+ 2 are called Type 2. It is known that determining the total
chromatic number is a NP-complete problems even for regular bipartite graphs [17].

Let π be a k-total coloring of G and let Cπ(u) := {π(u)} ∪ {π(uv) | uv ∈ E(G), v ∈ V (G)} be
the set of colors that occur in a vertex u ∈ V (G). If it is clear from the context that π is a k-total
coloring of G, then Cπ(u) is written simply as C(u). Two vertices u and v are distinguishable when
C(u) ̸= C(v). If this property is true for every pair of adjacent vertices, then π is an Adjacent-
Vertex-Distinguishing-k-Total-Coloring, or simply AVD-k-total coloring. The AVD-total chromatic
number of G, denoted by χ′′

a(G), is the smallest k for which G admits an AVD-k-total coloring. If
AVD-TCC holds, then we can classify any graph according to the AVD-total chromatic number.
If χ′′

a(G) = ∆+ 1, then G is called AVD-Type 1. If χ′′
a(G) = ∆+ 2, then G is called AVD-Type 2.

If χ′′
a(G) = ∆+3, then G is called AVD-Type 3. It is straightforward that any AVD-Type 1 graph

is a Type 1 graph. However, the converse is not true. For instance, the complete graph Kn with
n odd, is Type 1 and AVD-Type 3 [9, 23].

In 2005, Zhang et al. [24] introduced the AVD-total coloring problem. The authors determined
the AVD-total chromatic number for some families of simple graphs and noted that all of them
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admit an AVD-k-total coloring with k is at most ∆+3. Based on these results, the authors posed
the Conjecture 1.1, known as AVD-Total Coloring Conjecture (AVD-TCC).

Conjecture 1.1 (Zhang et al. [24]). If G is a simple graph, then χ′′
a(G) ≤ ∆+ 3.

Since the proposal of this conjecture, several studies have been conducted. In 2008, Chen [8]
determined that graphs with maximum degree 3 satisfy the AVD-TCC. In the same year, Chen [9]
determined the AVD-total chromatic number of some graph classes with maximum degree of at
least 6. In 2009, Chen and Guo [7] determined the AVD-total chromatic number of hypergraphs
Qn. In the same year, Hulgan [14] presented concise proofs of AVD-total chromatic number of
cycles, complete graphs and the upper bound of graphs with maximum degree 3. Furthermore,
recent studies have been conducted involving some other graph classes in order to investigate
Conjecture 1.1, such as equipartite graphs, split graphs, corona graphs and 4-regular graphs [16,
19–21]. We remark that, in 2014, Papaioannou and Raftopoulou proved that AVD-TCC holds for
4-regular graphs.

A circulant graph Cn(d1, d2, . . . , dl) with integers numbers 1 ≤ di ≤ ⌊n/2⌋, where 1 ≤ i ≤ l has
vertex set V = {v0, v1, . . . , vn−1} and edge set E =

⋃l
i=1 Ei, where Ei = {ei0, ei1, . . . , ein−1} and

eij = vjvj+di
(if n is even and dl = n/2, then El = {el0, el1, . . . , eln−2

2

}), where the indexes of the
vertices are considered modulo n.

It is known that cycle graphs Cn ≃ Cn(1) are Type 1 if and only if n is divisible by 3 [23] and
are AVD-Type 2, if n ̸= 3 and AVD-Type 3, if n = 3 [24]. It is well known that the connected
cubic circulant graph is written as C2n(d, n), such that n and d are positive integers such that
1 ≤ d < n and n ≥ 2. In 2004, the total chromatic number of every cubic circulant graph was
determined by Hackmann and Kemnitz [12]. Recently, it was proved that every cubic circulant
graph is AVD-Type 2 [1].

Some partial results are known on power of cycle graphs, the infinite family of circulant graphs
Ck

n := Cn(1, 2, . . . , k) with 2 ≤ k ≤ ⌊n/2⌋. In 2003, Campos and de Mello [6], proved that
Cn(1, 2) is Type 1, except for graph C7(1, 2) which is Type 2, and they conjectured that Ck

n, with
2 ≤ k ≤ ⌊n/2⌋, is Type 2 if and only if n is odd and k > n

3 − 1 [5]. In 2019, Zorzi [25] proved that
this conjecture holds for k = 3 and k = 4 and in the same year, Zorzi et al. [26] proved that power
of cycle graphs with k even and n ≥ 4k2 + 2k are all Type 1. In 2021, Geetha et al. [11] proved
that some infinite families of power of cycle graphs verify Campos and de Melo’s conjecture. In
2019, Alvarado et al. [2], on AVD-total chromatic number of power of cycles, proved that C2

n and
Ck

n with n ≡ 0 mod (k+1) are AVD-Type 2. For 4-regular circulant graphs, some infinite families
have their total chromatic number determined [10, 15, 18]. On AVD-total chromatic number of
4-regular circulant graphs few results are known: the complete graph K5 is the only 4-regular
circulant graph known which is AVD-Type 3 ; and C2

n is AVD-Type 2 (see Figure 1).
In this paper, we prove that the 4-regular circulant graphs Cn(a, b) are AVD-Type 2, where n

is even, a and b are odd such that 1 ≤ a < b < ⌊n/2⌋, and Cn(1, k) are AVD-Type 2 where n and
ℓ = n

gcd(n,k) are even.

2 Main Result

In this section, we prove that all members of two infinite families of 4-regular graphs are AVD-
Type 2. Specifically, we prove that Cn(a, b) is AVD-Type 2, if n is even and a and b are both odd
such that 1 ≤ a < b < ⌊n/2⌋ (see Corollary 2.1); and Cn(1, k) is AVD-Type 2 (see Theorem 2.1),
where n and ℓ = n

gcd(n,k) are even. To prove both results, we use two auxiliary properties that
allow us to determine the AVD-total chromatic number of these graph classes.
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(a) (b)

Figure 1: Examples of circulant graphs such that their AVD-total chromatic number were
determined. In Figure 1a, the complete graph K5 ≃ C5(1, 2) which is the only known 4-regular
AVD-Type 3 graph. In Figure 1b, the power of cycle graph C2

6 ≃ C6(1, 2) which is AVD-Type 2.
Source: the authors.

Proposition 2.1 (Zhang et al. [24]). Let G be a simple graph. If G has two adjacent vertices of
maximum degree, then χa

′′(G) ≥ ∆+ 2. On the other hand, if G does not have adjacent vertices
of maximum degree, then χa

′′(G) ≥ ∆+ 1.

Proposition 2.2 (Chen [9]). If G is a bipartite graph, then χa
′′(G) ≤ ∆+ 2.

The following lemma characterizes the bipartite circulant graphs (Lemma 2.1).

Lemma 2.1 (Heuberger [13]). The circulant graph Cn(d1, d2, . . . , dl) is bipartite if and only if n
is even and di is odd, for all i ∈ {1, 2, . . . , l}.

Corollary 2.1. The 4-regular circulant graph Cn(a, b), with n even, and such that a and b are
both odd, is AVD-Type 2.

Proof. Since n is even and a and b are odd, from Lemma 2.1, Cn(a, b) is bipartite. From Proposi-
tion 2.1, χ′′

a(Cn(a, b)) ≥ 6 and from Proposition 2.2, χ′′
a(Cn(a, b)) ≤ 6. Therefore, χ′′

a(Cn(a, b)) = 6,
i.e., Cn(a, b) is AVD-Type 2.

Observe that, according to Corollary 2.1, the 4-regular circulant graph Cn(1, k) is AVD-Type 2
when n is even and k is odd. The remaining case for even n occurs when k is even. Theorem 2.1
provides a partial result for this case, assuming that ℓ = n

gcd(n,k) is even.

Theorem 2.1. Let n and k even positive integers such that 1 < k < n/2⌋. If ℓ = n
gcd(n,k) is even,

then 4-regular circulant graph Cn(1, k) is AVD-Type 2.

Proof. We ask the reader to refer to Figures 2 and 3 to understand the coloring procedure defined
below. Let G := Cn(1, k) be the 4-regular graph such that 1 < k < ⌊n/2⌋ and n even. Since
Cn(1, k) has two adjacent vertices of maximum degree, from Proposition 2.1, χ′′

a(Cn(1, k)) ≥ 6. In
order to prove that χ′′

a(Cn(1, k)) = 6 we depict an AVD-6-total coloring π of Cn(1, k). We remark
that E(Cn(1, k)) = E1 ∪ E2 such that Ei = {eij | j ∈ {0, 1, . . . , n − 1}}, where e1j = vjvj+1 and
e2j = vjvj+k. So, we can partite the Cn(1, k) into two subgraphs, G1 which is induced by E1 and
G2 which is induced by E2. We remark that G1 is one cycle with lenght n and G2 is a disjoint
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union of gcd(n, k) cycles with lenght ℓ = n
gcd(n,k) . Therefore, we set:

G2 :=

gcd(n,k)−1⋃
p=0

Cp,

such that, p ∈ {0, 1, . . . , gcd(n, k) − 1}. Notice that Cp is the induced subgraph G[Sp] by the set
Sp = {vp+jk | j ∈ {0, 1, . . . , ℓ − 1}} and we set wp

j := vp+jk. Figure 2 depicts the subgraph G2 of
C16(1, 4) as four cycles C0, C1, C2 and C3.

(a) (b)

Figure 2: The circulant graph C16(1, 4). Since gcd(16, 4) = 4, G2 is a disjoint union of four cycles
C0, C1, C2 and C3. In Figure 2a, we depict the cycles C0 and C2 with bold edges. In Figure 2b, we

depict the cycles C1 and C3 with bold edges. Source: the authors.

The AVD-6-total coloring π : V (G) ∪ E(G) → {1, 2, 3, 4, 5, 6} is defined as follows:
For each cycle Cp, we assign to the vertices the colors 1 and 2 alternately if p is even, and the

colors 3 and 4 alternately if p is odd. We assing to the edges the colors 3 and 4 alternately if p is
even, and 1 and 2 alternately if p is odd. Consider j ∈ {0, 1, . . . , ℓ− 1}. Therefore, for p even, π is
defined by:

π(wp
j ) =

{
1, if j is even
2, if j is odd

π(wp
jw

p
j+1) =

{
3, if j is even
4, if j is odd

(1)

and for p odd:

π(wp
j ) =

{
3, if j is even
4, if j is odd

π(wp
jw

p
j+1) =

{
1, if j is even
2, if j is odd

(2)

For edges vivi+1 ∈ E1 with i ∈ {0, 1, . . . , n− 1}, we assign the colors 5 and 6 alternately:

π(vivi+1) =

{
5, if i is even
6, if i is odd

(3)

In order to prove that π is an AVD-6-total coloring we will show that:
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1. π is a 6-total coloring. Since k is even, every index vertex i of vi has the same parity as
index vertex i+ k of vi+k. Therefore, the adjacent vertices vi and vi+k belongs to the same
cycle Cp. Since ℓ is even, the alternate colors given in (1) and (2) form a 4-total coloring of
the cycles Cp. Since n is even, G1 is an even cycle. Therefore, alternate colors 5 and 6 given
in (3) induces a 6-total coloring of G1, where vertices with even indexes are assign by 1 or 2
and odd indexes are assign by 3 or 4. Therefore π is a 6-total coloring.

2. each pair of adjacent vertices are distinguishable. Suppose that i is even, then from (1), vi
and vi+k are assigned by 1 or 2. If π(vi) = 1, then π(vi+k) = 2 and 2 ̸∈ C(vi). The same
argument can be done supposing that π(vi) = 2. Therefore, vi and vi+k are distinguishable,
i.e., C(vi) ̸= C(vi+k). Suppose that i is odd, then from (2), vi and vi+k are assigned by
3 and 4. If π(vi) = 3, then π(vi+k) = 4 and 4 ̸∈ C(vi). The same argument can be done
supposing that π(vi) = 4. Therefore, vi and vi+k are distinguishable, i.e., C(vi) ̸= C(vi+k).
Finally, we prove that vi and vi+1 are distinguishable. Suppose that i is even. Since there
are incident edges of vi that are assigned with colors 3 and 4, {3, 4} ⊂ C(vi). Therefore,
if π(vi+1) = 3 implies that 4 ̸∈ C(vi+1). Hence, C(vi) ̸= C(vi+1). Suppose that i is odd.
Since there are incident edges of vi that are assigned with colors 1 and 2, {1, 2} ⊂ C(vi).
Therefore, if π(vi+1) = 1 implies that 2 ̸∈ C(vi+1). Hence, C(vi) ̸= C(vi+1). Thus, vi and
vi+1 are distinguishable.

Thus, π is an AVD-6-total coloring of Cn(1, k). Figure 3 depicts the circulant graph C16(1, 4) with
an AVD-6-total coloring.

Figure 3: The circulant graph C16(1, 4) with the AVD-6-total coloring π of C16(1, 4). The
vertices of C16(1, 4) are labelled with set wp

j := vp+jk. The blue assignment in the internal region
of vertex u ∈ V (C16(1, 4)) is the color that does not belong to the set C(u). Source: the authors.

3 Concluding Remarks
In this work, we determine the AVD-total chromatic number for two infinite families of 4-

regular circulant graphs. We prove that χ′′
a(Cn(a, b)) = 6 when n is even and a, b are odd integers
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such that 1 ≤ a < b < ⌊n/2⌋, and that χ′′
a(Cn(1, k)) = 6 when both n and ℓ = n

gcd(n,k) are even.
These results show that all graphs in these families are AVD-Type 2 and provide further evidence
supporting the AVD-Total Coloring Conjecture.

For the 4-regular circulant graph Cn(1, k), the remaining open cases include instances where n
is even, k is even, and ℓ is odd. These cases require a distinct coloring strategy, as the auxiliary
decomposition used in Theorem 2.1 depends on the evenness of ℓ. Furthermore, the case when
n is odd remains entirely open and poses additional combinatorial challenges, particularly due to
structural differences in the decomposition of circulant graphs of odd order.

Given that the only known 4-regular circulant graph that is AVD-Type 3 is C5(1, 2), and based
on the current state of the art and the techniques developed in this work, we propose Conjecture 3.1.

Conjecture 3.1. Let n and k be positive integers such that 1 < k ≤ ⌊n/2⌋ and n ≥ 5. Every
4-regular circulant graph Cn(1, k) is AVD-Type 2, except for C5(1, 2) which is AVD-Type 3.
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