Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 12, n. 1, 2026.

Trabalho apresentado no XLIV CNMAC, Fundagéo Getulio Vargas - Rio de Janeiro - RJ, 2025.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

On the AVD-Total Chromatic Number of 4-Regular
Circulant Graphs

Luerbio Faria! Mauro Nigro? Diana Sasaki®
Rio de Janeiro State University

Abstract. An AVD-k-total coloring of a simple graph G is a mapping 7 : V(G)UE(G) — {1,...,k},
with & > 1 such that: for each pair of adjacent or incident elements z,y € V(G)UE(G), w(x) # 7(y);
and for each pair of adjacent vertices x,y € V(G), sets {m(z)}U{n(zv) | 2v € E(G) and v € V(G)}
and {m(y)} U {r(yv) | yv € E(G) and v € V(G)} are distinct. The AVD-total chromatic number,
denoted by x7 (G) is the smallest k for which G admits an AVD-k-total-coloring. In 2005, Zhang et
al. conjectured that any graph G has x4 (G) < A+3, where A is the maximum degree of G and this
conjecture is known as AVD-Total Coloring Conjecture (AVD-TCC). In this article, we determine
that the AVD-total chromatic number of two infinite families of 4-regular circulant graphs, we prove
that x., (Cr(a,b)) = 6, where n is even and a, b are both odd such that 1 < a < b < [n/2], and
Xa(Cn(1,k)) = 6, where n and £ =

Palavras-chave. Total Coloring, Adjacent-Vertex-Distinguishing, Circulant Graphs

n
ged(n,k) are even.

1 Introduction

Let G = (V, E) be a simple connected graph and A be the maximum degree of G, for most
definitions and notations in Graph Theory we consider [4]. A k-total coloring of G is an assignment
of k colors to the vertices and edges of GG so that adjacent or incident elements have different colors.
The total chromatic number of G, denoted by x”(G), is the smallest & for which G has a k-total
coloring. Clearly, x”(G) > A + 1. The Total Coloring Conjecture (TCC) states that the total
chromatic number of any graph is at most A + 2 [3, 22]. Graphs with x”(G) = A + 1 are called
Type 1, and graphs with x”(G) = A + 2 are called Type 2. It is known that determining the total
chromatic number is a NP-complete problems even for regular bipartite graphs [17].

Let 7 be a k-total coloring of G and let Cr(u) := {m(u)} U {w(uwv) | uv € E(G),v € V(G)} be
the set of colors that occur in a vertex u € V(G). If it is clear from the context that 7 is a k-total
coloring of G, then Cj (u) is written simply as C(u). Two vertices u and v are distinguishable when
C(u) # C(v). If this property is true for every pair of adjacent vertices, then 7 is an Adjacent-
Vertez- Distinguishing-k-Total-Coloring, or simply AVD-k-total coloring. The AVD-total chromatic
number of G, denoted by x//(G), is the smallest k for which G admits an AVD-k-total coloring. If
AVD-TCC holds, then we can classify any graph according to the AVD-total chromatic number.
If X/(G) = A+ 1, then G is called AVD-Type 1. If x(G) = A+ 2, then G is called AVD-Type 2.
If X/(G) = A +3, then G is called AVD-Type 3. Tt is straightforward that any AVD-Type 1 graph
is a Type 1 graph. However, the converse is not true. For instance, the complete graph K, with
n odd, is Type 1 and AVD-Type 3 |9, 23].

In 2005, Zhang et al. [24] introduced the AVD-total coloring problem. The authors determined
the AVD-total chromatic number for some families of simple graphs and noted that all of them
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admit an AVD-k-total coloring with & is at most A 4 3. Based on these results, the authors posed
the Conjecture 1.1, known as AVD-Total Coloring Conjecture (AVD-TCC).

Conjecture 1.1 (Zhang et al. [24]). If G is a simple graph, then x/(G) < A+ 3.

Since the proposal of this conjecture, several studies have been conducted. In 2008, Chen [§]
determined that graphs with maximum degree 3 satisfy the AVD-TCC. In the same year, Chen [9]
determined the AVD-total chromatic number of some graph classes with maximum degree of at
least 6. In 2009, Chen and Guo [7] determined the AVD-total chromatic number of hypergraphs
Q. In the same year, Hulgan [14] presented concise proofs of AVD-total chromatic number of
cycles, complete graphs and the upper bound of graphs with maximum degree 3. Furthermore,
recent studies have been conducted involving some other graph classes in order to investigate
Conjecture 1.1, such as equipartite graphs, split graphs, corona graphs and 4-regular graphs [16,
19-21]. We remark that, in 2014, Papaioannou and Raftopoulou proved that AVD-TCC holds for
4-regular graphs.

A circulant graph Cp(dy,da, ..., d;) with integers numbers 1 < d; < |n/2], where 1 < ¢ <[ has
vertex set V = {vg,v1,...,v,_1} and edge set E = |J\_, By, where E; = {ei,ei,... e} ,} and
eé» = vjvj4q, (if n is even and d; = n/2, then E; = {ek,el,... e\, »}), where the indexes of the
vertices are considered modulo n. ’

It is known that cycle graphs C,, ~ C,, (1) are Type 1 if and only if n is divisible by 3 [23] and
are AVD-Type 2, if n # 3 and AVD-Type 8, if n = 3 [24]. Tt is well known that the connected
cubic circulant graph is written as Ca,(d,n), such that n and d are positive integers such that
1 <d< nandn > 2 In 2004, the total chromatic number of every cubic circulant graph was
determined by Hackmann and Kemnitz [12]. Recently, it was proved that every cubic circulant
graph is AVD-Type 2 [1].

Some partial results are known on power of cycle graphs, the infinite family of circulant graphs
Ck = C,(1,2,...,k) with 2 < k < [n/2]. In 2003, Campos and de Mello [6], proved that
Cn(1,2) is Type 1, except for graph C;(1,2) which is Type 2, and they conjectured that CF, with
2 <k < [n/2],is Type 2 if and only if n is odd and k > ¢ — 1 [5]. In 2019, Zorzi [25] proved that
this conjecture holds for £k = 3 and k£ = 4 and in the same year, Zorzi et al. [26] proved that power
of cycle graphs with k even and n > 4k? + 2k are all Type 1. In 2021, Geetha et al. [11] proved
that some infinite families of power of cycle graphs verify Campos and de Melo’s conjecture. In
2019, Alvarado et al. [2], on AVD-total chromatic number of power of cycles, proved that C2 and
Ck withn =0 mod (k+1) are AVD-Type 2. For 4-regular circulant graphs, some infinite families
have their total chromatic number determined [10, 15, 18]. On AVD-total chromatic number of
4-regular circulant graphs few results are known: the complete graph K5 is the only 4-regular
circulant graph known which is AVD-Type 3; and C? is AVD-Type 2 (see Figure 1).

In this paper, we prove that the 4-regular circulant graphs C,,(a,b) are AVD-Type 2, where n
is even, a and b are odd such that 1 < a < b < |n/2], and C,(1,k) are AVD-Type 2 where n and

p— n
! = Zod(nk) re even.

2 Main Result

In this section, we prove that all members of two infinite families of 4-regular graphs are AVD-
Type 2. Specifically, we prove that C),(a,b) is AVD-Type 2, if n is even and a and b are both odd
such that 1 < a < b < |n/2] (see Corollary 2.1); and C,,(1,k) is AVD-Type 2 (see Theorem 2.1),
where n and ¢ = m are even. To prove both results, we use two auxiliary properties that
allow us to determine the AVD-total chromatic number of these graph classes.
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Figure 1: Examples of circulant graphs such that their AVD-total chromatic number were
determined. In Figure la, the complete graph K5 ~ C5(1,2) which is the only known 4-regular
AVD-Type 3 graph. In Figure 1b, the power of cycle graph CZ ~ Cg(1,2) which is AVD-Type 2.

Source: the authors.

Proposition 2.1 (Zhang et al. [24]). Let G be a simple graph. If G has two adjacent vertices of
mazimum degree, then x,"(G) > A+ 2. On the other hand, if G does not have adjacent vertices
of mazimum degree, then x,"(G) > A+ 1.

Proposition 2.2 (Chen [9]). If G is a bipartite graph, then x.”(G) < A+ 2.
The following lemma characterizes the bipartite circulant graphs (Lemma 2.1).

Lemma 2.1 (Heuberger [13]). The circulant graph C,(dy,da, ..., d;) is bipartite if and only if n
is even and d; is odd, for alli € {1,2,...,1}.

Corollary 2.1. The 4-regular circulant graph C,(a,b), with n even, and such that a and b are
both odd, is AVD-Type 2.

Proof. Since n is even and a and b are odd, from Lemma 2.1, C,(a,b) is bipartite. From Proposi-
tion 2.1, X7/ (Cy(a, b)) > 6 and from Proposition 2.2, x7/(Cy,(a,b)) < 6. Therefore, x7/(Cy,(a,b)) = 6,
ie., Cy(a,b) is AVD-Type 2. O

Observe that, according to Corollary 2.1, the 4-regular circulant graph C,,(1, k) is AVD-Type 2
when n is even and k is odd. The remaining case for even n occurs when k is even. Theorem 2.1
provides a partial result for this case, assuming that ¢ = m is even.

Theorem 2.1. Letn and k even positive integers such that 1 < k <n/2]. If € = m s even,
then 4-regular circulant graph C,(1,k) is AVD-Type 2.

Proof. We ask the reader to refer to Figures 2 and 3 to understand the coloring procedure defined
below. Let G := C,(1,k) be the 4-regular graph such that 1 < k& < |n/2] and n even. Since
Cp(1, k) has two adjacent vertices of maximum degree, from Proposition 2.1, x7/(C,(1,k)) > 6. In
order to prove that ! (C,(1,k)) = 6 we depict an AVD-6-total coloring 7 of Cy,(1, k). We remark
that E(Cy(1,k)) = E1 U E; such that E; = {e} | j € {0,1,...,n — 1}}, where e} = v;v;1; and
e? = vjvj1k. So, we can partite the Cy,(1, k) into two subgraphs, G which is induced by E; and

J
G2 which is induced by F,. We remark that G is one cycle with lenght n and G5 is a disjoint
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union of ged(n, k) cycles with lenght ¢ = zed(nmy - Lherefore, we set:

ged(n,k)—1

G= |J G

p=0
such that, p € {0,1,...,gcd(n, k) — 1}. Notice that C, is the induced subgraph G[S,] by the set

Sp = {vpsjr | 5 €{0,1,...,£ = 1}} and we set w’ := vy ;). Figure 2 depicts the subgraph Gy of
C16(1,4) as four cycles Cy, C1, C2 and Cs.

Figure 2: The circulant graph Cjg(1,4). Since ged(16,4) = 4, G2 is a disjoint union of four cycles
Co, C1, Co and Cs. In Figure 2a, we depict the cycles Cy and Co with bold edges. In Figure 2b, we
depict the cycles C; and C3 with bold edges. Source: the authors.

The AVD-6-total coloring 7 : V(G) U E(G) — {1,2,3,4,5,6} is defined as follows:

For each cycle C,, we assign to the vertices the colors 1 and 2 alternately if p is even, and the
colors 3 and 4 alternately if p is odd. We assing to the edges the colors 3 and 4 alternately if p is
even, and 1 and 2 alternately if p is odd. Consider j € {0,1,...,¢—1}. Therefore, for p even, 7 is

defined by:
1, if j is even 3, if j is even
wh) =47 wfwh ) =1 1
m(w;) {2, fjisodd T\ 1) {4, if § is odd (1)
and for p odd:
w(w) = 3, lfj %s even 7T(’LUI-J’LUI-J+1) _ 1, 1f] ?s even @)
J 4, if j is odd 7 2, if j is odd
For edges v;v;4+1 € By with i € {0,1,...,n — 1}, we assign the colors 5 and 6 alternately:

5, if 4 is even

m(vivien) = {6, if i is odd

In order to prove that 7 is an AVD-6-total coloring we will show that:
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1. 7 is a 6-total coloring. Since k is even, every index vertex ¢ of v; has the same parity as
index vertex ¢ + k of v; 1. Therefore, the adjacent vertices v; and v;4 belongs to the same
cycle Cp,. Since £ is even, the alternate colors given in (1) and (2) form a 4-total coloring of
the cycles C,. Since n is even, (G; is an even cycle. Therefore, alternate colors 5 and 6 given
in (3) induces a 6-total coloring of G, where vertices with even indexes are assign by 1 or 2
and odd indexes are assign by 3 or 4. Therefore 7 is a 6-total coloring.

2. each pair of adjacent vertices are distinguishable. Suppose that i is even, then from (1), v;
and v,y are assigned by 1 or 2. If m(v;) = 1, then 7m(viyr) = 2 and 2 € C(v;). The same
argument can be done supposing that 7(v;) = 2. Therefore, v; and v; 1, are distinguishable,
ie., C(v;) # C(vitr). Suppose that i is odd, then from (2), v; and v,y are assigned by
3 and 4. If 7(v;) = 3, then m(v;4x) = 4 and 4 ¢ C(v;). The same argument can be done
supposing that 7(v;) = 4. Therefore, v; and v;4 are distinguishable, i.e., C(v;) # C(viyg).
Finally, we prove that v; and v;;1 are distinguishable. Suppose that 7 is even. Since there
are incident edges of v; that are assigned with colors 3 and 4, {3,4} C C(v;). Therefore,
if m(v;y1) = 3 implies that 4 & C(v;11). Hence, C(v;) # C(viy1). Suppose that i is odd.
Since there are incident edges of v; that are assigned with colors 1 and 2, {1,2} C C(v;).
Therefore, if w(v;+1) = 1 implies that 2 ¢ C(v;41). Hence, C(v;) # C(vit1). Thus, v; and
v;4+1 are distinguishable.

Thus, 7 is an AVD-6-total coloring of C),(1, k). Figure 3 depicts the circulant graph C16(1,4) with
an AVD-6-total coloring. O

Figure 3: The circulant graph Cig(1,4) with the AVD-6-total coloring 7 of Ci6(1,4). The
vertices of C6(1,4) are labelled with set w’ := v, ;5. The blue assignment in the internal region
of vertex u € V(C16(1,4)) is the color that does not belong to the set C(u). Source: the authors.

3 Concluding Remarks

In this work, we determine the AVD-total chromatic number for two infinite families of 4-
regular circulant graphs. We prove that x/(C)(a,b)) = 6 when n is even and a,b are odd integers
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such that 1 < a < b < |n/2], and that x//(C,(1,k)) = 6 when both n and ¢ = Zod(ny are even.
These results show that all graphs in these families are AVD-Type 2 and provide further evidence
supporting the AVD-Total Coloring Conjecture.

For the 4-regular circulant graph C),(1, k), the remaining open cases include instances where n
is even, k is even, and ¢ is odd. These cases require a distinct coloring strategy, as the auxiliary
decomposition used in Theorem 2.1 depends on the evenness of ¢. Furthermore, the case when
n is odd remains entirely open and poses additional combinatorial challenges, particularly due to
structural differences in the decomposition of circulant graphs of odd order.

Given that the only known 4-regular circulant graph that is AVD-Type 3 is C5(1,2), and based
on the current state of the art and the techniques developed in this work, we propose Conjecture 3.1.

Conjecture 3.1. Let n and k be positive integers such that 1 < k < |n/2| and n > 5. FEvery
4-regular circulant graph C,(1,k) is AVD-Type 2, except for Cs(1,2) which is AVD-Type 3.
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