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Abstract. Functional a posteriori error estimates provide guaranteed upper bounds on the devia-
tion between the exact solution and any approximation in the appropriate functional space, making
them agnostic to the discretization method used to obtain the approximation. However, numerical
solutions often do not belong to the correct functional space, requiring postprocessing techniques to
ensure compatibility with the error estimation framework. In this article, we consider the Poisson
equation as a model problem and demonstrate how to postprocess solutions obtained using mimetic
differences of the Corbino-Castillo type to enable the application of functional error estimates. Nu-
merical experiments in two dimensions confirm that the proposed postprocessing techniques yield
fully computable error estimates that recover ideal convergence rates in the energy norm.
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1 Introduction
In the last decades, a posteriori error estimates of the functional type have been applied to a

wide range of mathematical models, including linear elliptic problems, elasticity, incompressible
viscous fluids and non-linear problems [6]. Since functional error estimates rely only on functional
arguments of the continuous problem, they are agnostic to the numerical method used to approxi-
mate the solution. Indeed, functional error estimates are valid for any approximation in the same
energy space as the exact weak solution.

In this work, we explore the application of functional error estimates to mimetic difference
approximations to the 2D Poisson equation. In particular, we use the mimetic differences of the
Corbino-Castillo type [3]. Mimetic differences of the Corbino-Castillo type provide high-order
discrete analogs of fundamental differential operators while preserving key physical and geometric
properties. These methods enforce local conservation principles by construction, making them
particularly well-suited for modeling problems governed by conservation laws.

Unfortunately, functional error estimates cannot be directly applied to mimetic difference solu-
tions because the primal and dual approximations do not belong to the required functional spaces.
To circumvent this issue, we propose a postprocessing step [7], where the mimetic solution is in-
terpolated to relevant nodal points using mimetic interpolants [5]. This step ensures that the
postprocessed solutions are compatible with the functional error estimate framework. The rest of
the article is structured as follows. In Section 2, we introduce the model problem and its weak
form. In Section 3, we recall the guaranteed abstract bounds for the primal variable. Finally, in
Section 4, we introduce the mimetic difference approximation and the postprocessed techniques
and in Section 5 we present the numerical results.
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2 The Model Problem
Let Ω ⊂ R2 be an open, bounded domain with a smooth boundary Γ. Poisson’s equation

consists of finding the potential p such that

∇ · (−∇p) = f in Ω and p = 0 on Γ, (1)

where ∇ is the nabla operator and f ∈ L2(Ω) is a source term.
Let (·, ·)S denote the L2 inner product over a domain S with norm ∥·∥S . It is well known that

this model admits a weak solution, which is defined as follows: Find p ∈ H1
0 (Ω) such that

(∇p,∇q)Ω = (f, q)Ω ∀ q ∈ H1
0 (Ω). (2)

Here, H1
0 (Ω) is the usual Sobolev space of square-integrable functions with square-integrable weak

gradient and zero trace on Γ. The weak form is well-posed under standard regularity arguments.
To measure the error in the following section, we will employ the energy norm

|||q||| = ∥∇q∥Ω ∀q ∈ H1
0 (Ω). (3)

3 Abstract Framework
In this section, we present the guaranteed upper bounds following [6]. We first present the stan-

dard result based on the global Friedrich constant and then improve it by considering a partition
of the domain.

Before presenting the abstract results, we need to introduce some definitions and results from
functional analysis. Recalling that H(div,Ω) is the space of square-integrable vector-valued func-
tions with square-integrable weak divergence, we remind that Green’s theorem establishes that
for any pair (q,v) ∈ H1

0 (Ω) × H(div,Ω) there holds (∇ · v, q)Ω + (v,∇q)Ω = 0. Recall that the
Friedrich inequality states that for any q ∈ H1

0 (Ω), there holds ∥q∥Ω ≤ CF,Ω∥∇q∥Ω, where CF,Ω is
the Friedrich constant.

Theorem 3.1 (Guaranteed upper bound on the primal variable). Let p ∈ H1
0 (Ω) be the solution

of (2) and q ∈ H1
0 (Ω) arbitrary. Then, for any v ∈ H(div,Ω), there holds

|||p− q||| ≤ ηDF(q,v) + ηR(v, f) =: M(q,v, f), (4)

where M(q,v, f) is the majorant for the deviation from the exact weak primal solution, and

ηDF(q,v) = ∥v +∇q∥Ω and ηR(v, f) = CF,Ω∥f −∇ · v∥Ω (5)

are respectively the diffusive error and residual error estimators.

Proof. Start by measuring the square of the difference between the exact solution p ∈ H1
0 (Ω) and

an arbitrary potential q ∈ H1
0 (Ω):

|||p− q|||2 = ∥∇(p− q)∥2Ω = (∇(p− q),∇(p− q))Ω = (f, p− q)Ω + (−∇q,∇(p− q))Ω . (6)

Here, we used (3), and the weak form (2). Let us now fix an arbitrary flux v ∈ H(div,Ω).
Then, using Green’s theorem, it holds that for the pair (p − q,v) ∈ H1

0 (Ω) ×H(div,Ω), we have
− (∇ · v, p− q)− (v,∇(p− q)) = 0. Adding this identity to (6), we get

|||p− q|||2 = (f −∇ · v, p− q)Ω + (−(v +∇q),∇(p− q))Ω . (7)
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Using the Cauchy-Schwarz inequality, the Friedrich inequality, and (3), the first term of (7) can
be bounded as

(f −∇ · v, p− q)Ω ≤ ∥f −∇ · v∥Ω∥p− q∥Ω ≤ CF,Ω∥f −∇ · v∥Ω|||p− q|||. (8)

Using the Cauchy-Schwarz inequality and (3), the second term of (7) can be bounded as

(−(v +∇q),∇(p− q))Ω ≤ ∥v +∇q∥Ω|||p− q|||. (9)

The proof is completed after substituting (8) and (9) in (7) and canceling common terms.

Remark 3.1 (Nature of the estimates). The majorant M(q,v, f) from Theorem 3.1 has two clear
contributions: (i) a diffusive error that measures the difference between an arbitrary H(div)-flux
and the flux obtained from an arbitrary H1

0 -potential, and (ii) a residual estimator that measures
the difference between the exact source term and the divergence of the arbitrary H(div)-flux.

In practice, the upper bound from Theorem 3.1 has the limitation that the Friedrich constant
is hard to determine and often overestimates the upper bound due to its global nature. A fully
computable upper bound can be obtained by considering the decomposition of the domain Ω.
That is Ω =

⋃
K∈Th

K, where K denotes a non-overlapping subdomain of Ω and Th is the set of all
subdomains K. This decomposition allows us to employ the local Poincaré inequality, which states
that for any q ∈ H1(K), K ⊂ Ω, there holds ∥q − {q}K∥K ≤ CP,K∥∇q∥K , where {q} = 1

|K| (q, 1)K
is the mean value of q over K and CP,K is the local Poincaré constant. Moreover, assuming K
convex, one can always bound CP,K such that CP,K ≤ hK

π , where hK := diam(K).
We shall require the following equivalences between global and local norms:

∥q∥2Ω =
∑

K∈Th

∥q∥2K ∀q ∈ L2(Ω) and |||q|||2 =
∑

K∈Th

∥∇q∥2K ∀q ∈ H1
0 (Ω). (10)

Moreover, to ensure the validity of this new upper bound, we require the arbitrary flux v ∈
H(div,Ω) entering the error estimates to conserve mass at the local level. We make this requirement
explicit in the following assumption.

Assumption 3.1 (Locally mass-conservative flux). Let v ∈ H(div,Ω) be fixed. Then, we say v is
locally mass-conservative if for all K ∈ Th satisfies (f, 1)K = (∇ · v, 1)K .

We now have all the ingredients to present the guaranteed upper bound for the primal variable
in the case of local mass-conservative fluxes.

Theorem 3.2 (Guaranteed upper bound on the primal variable for local mass-conservative fluxes).
Let p ∈ H1

0 (Ω) be the solution of (2) and q ∈ H1
0 (Ω) arbitrary. Then, for any function v ∈

H(div,Ω) satisfying Assumption 3.1, there holds

|||p− q||| ≤ ηDF(q,v) + ηR,LC(f,v) =: MLC(q,v, f) ≤ M(q,v, f), (11)

where MLC(q,v, f) is the majorant for the deviation from the exact weak primal solution for local
mass-conservative fluxes, and

ηDF(q,v) =

( ∑
K∈Th

∥v +∇q∥2K

)1/2

and ηR,LC(f,v) =

( ∑
K∈Th

h2
K

π2
∥f −∇ · v∥2K

)1/2

, (12)

are respectively the diffusive error and residual error for local mass-conservative fluxes estimators.
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Proof. The proof follows the previous one, except for the first term in (7) that is now bounded as

(f −∇ · v, p− q)Ω =
∑

K∈Th

(f −∇ · v, p− q)K =
∑

K∈Th

(f −∇ · v, p− q − {p− q})K

≤
∑

K∈Th

∥f −∇ · v∥K∥p− q − {p− q}∥K ≤
∑

K∈Th

CP,K∥f −∇ · v∥K∥∇(p− q)∥K

≤
∑

K∈Th

hK

π
∥f −∇ · v∥K∥∇(p− q)∥K ≤

( ∑
K∈Th

h2
K

π2
∥f −∇ · v∥2K

)1/2

|||p− q|||. (13)

Here, we employ the equivalence between global and broken norms, the local mass-conservative
property of v, the Cauchy-Schwarz inequality, the local Poincaré inequality, the upper bound on
CP,K , the Cauchy-Schwarz inequality once more, and finally the equivalence between global and
broken norms. The proof is completed in a similar manner as in the previous one.

Note that MLC is now fully computable (i.e., it does not contain undetermined constants).
Moreover, since local Poincaré constants are smaller than the Friedrich constant, MLC ≤ M.

4 Mimetic Difference Approximation and Postprocessing
Mimetic differences provide discrete analogs of differential operators such as gradient ∇, di-

vergence ∇·, Laplacian ∇2, and curl ∇×. These operators are constructed to have a high-order
uniform order of accuracy over the whole domain (including boundaries), to approximate the ex-
tended Gauss divergence theorem, and to mimic vector calculus identities. We will use the ones
proposed by Corbino-Castillo [3]. These operators are available in the MOLE library [4].

Mimetic difference operators are defined on a staggered grid (see e.g., Fig. 1) where scalar and
vector fields are evaluated at different locations. To write the discrete analog of equations that
approximates (1), we must first introduce relevant sets. Let C denote the set of cell centers, F the
set of edge centers and V the set of vertices. Moreover, let FΓ denote the set of edge centers that
are on the boundary of the domain, i.e., FΓ := F ∩ Γ. We will also need the set of the four nodes
constituting the corners of the domain Vcorner ⊆ V . With the introduced sets, we define the set
P := C ∪ FΓ ∪ Vcorner. The mimetic difference method approximates the primal solution at the
nodes of P and the dual solution at the nodes of F . In other words, potentials are approximated at
cell centers (plus some boundary nodes) whereas fluxes are approximated at edge centers. Consider
now the following discrete linear operators:

G : R|P| → R|F|, D : R|F| → R|P|, L = D ◦G : R|P| → R|P|, B = R|P| → R|P|. (14)

The first operator is the mimetic gradient G, mapping from primal to dual degrees of freedom
(DoFs). The second operator is the mimetic divergence D, mapping from dual to primal DoFs.
The third operator is the mimetic Laplacian L, a composed linear operator that maps from primal
to primal DoFs, and B is a linear operator mapping from primal to primal DoFs handling the
boundary conditions. In practice, these operators are stored as sparse matrices. Their explicit
forms depend on the order of accuracy of the mimetic approximation, the grid, and the type of
boundary conditions. For our purposes, an explicit representation of the operators is not necessary.
The interested reader, however, is referred to [3, 4].

We shall now consider the mimetic approximation to (1). Let ph = {p1h, . . . , p
|P|
h }T be the

(computational) vector denoting the approximated mimetic solution and f = {f1, . . . , f |P|}T be
the exact source term projected onto the nodes of P. Then, the discrete linear system of equations
can be written as

(L+B)ph = −f . (15)
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Figure 1: A 4× 3 staggered grid. Left: Degrees of freedom for the primal variable (i.e., the
potential). Right: Degrees of freedom for the dual variable (i.e., the flux). Source: Authors.

After solving (15), mimetic fluxes can be retrieved using ph. Let uh = {u1
h, . . . , u

|F|
h }T be the

approximated mimetic flux, then
uh = −Gph. (16)

Recall that Theorems 3.1 and 3.2 require a potential in H1
0 (Ω) and a flux in H(div,Ω). However,

our mimetic primal and dual solutions do not directly belong to such spaces. We must then
postprocess both quantities and produce a potential p̃h ∈ H1

0 (Ω) and a flux ũh ∈ H(div,Ω). To
this aim, we first introduce some relevant local finite element spaces [1].

For a rectangular element K ⊂ Ω, we denote by Pk1,k2
(K) the space of polynomials of degree

less or equal to k1 in x and less or equal to k2 in y. When k1 = k2, we use Qk(K) = Pk,k(K). For
the fluxes, we will need the Raviart-Thomas space of degree k, defined as RTk(K) = Pk+1,k(K)×
Pk,k+1(K). The construction of the broken global finite element spaces is now straightforward:

Qk(Th) = {qh ∈ L2(Ω) : qh|K ∈ Qk(K) ∀ K ∈ Th}, (17)

RTk(Th) = {vh ∈ [L2(Ω)]2 : vh|K ∈ RTk(K) ∀ K ∈ Th}. (18)

One can prove that Qk(Th) ∩ H1
0 (Ω) ⊂ H1

0 (Ω) for any k ≥ 1, whereas RTk(Th) ⊂ H(div,Ω) for
any k ≥ 0. Thus, to obtain computable estimates [8], we need a potential p̃h ∈ Qk(Th) ∩H1

0 (Ω),
k ≥ 1 and a flux ũh ∈ RTk(Th), k ≥ 0. We shall fulfill the former requirement via a potential
reconstruction process and the latter via extension of normal fluxes following [2, 7].

Pressure Reconstruction

Let ph ∈ R|P| be known. Moreover, let IP→V : R|P| → R|V| be the mimetic interpolant from
primal DoFs to vertices, and let IP→F : R|P| → R|F| be the mimetic interpolant from primal DoFs
to edge centers. Then, construct the set of Lagrangian nodes L2 = {ph, IP→Vph, IP→Fph}, and
from there obtain:

p̃h|K =

9∑
i=1

πiϕi ∈ Q2(K), ∀K ∈ Th, (19)

where πi ∈ L2 and ϕi is the standard Lagrange basis function. With each p̃h|K ∈ Q2(K), we can
now construct the global piecewise quadratic function p̃h ∈ Q2(Th).

Flux Extension

Let uh ∈ R|F| be known. Then, extend the edge fluxes into each element using Raviart-Thomas
basis functions [2]:

ũh|K =

4∑
j=1

uh,jψj ∈ RT0(K), ∀K ∈ Th, (20)
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Figure 2: True and estimated error fields. Left: Quartic field. Right: Symmetric oscillatory
Gaussian field. Source: Authors.

where ψj are the lowest-order Raviart-Thomas basis functions on each edge and uh,j are the known
flux values at the edge centers. With each ũh|K ∈ RT0(K), we can now construct ũh ∈ RT0(Th).
Notably, the extended flux ũh satisfies the divergence constraint in each element K ∈ Th, ensuring
local conservation.

Having available the post-processed pair (p̃h, ũh), fully computable error estimates are imme-
diate by setting (q,v) = (p̃h, ũh) in Theorem 3.2.

5 Numerical Tests
In this section, we assess the efficiency of our error estimates by applying them to two different

manufactured solutions. Both examples employed mimetic approximations of second order and
the domain is the unit square. Numerical examples are available at www.github.com/jhabriel/
mimetic_a_posteriori.git. To quantify the efficacy of our estimates, we introduce the efficiency
index Ieff := MLC(p̃h, ũh, f)/|||p− p̃h|||. Note that according to Theorem 3.2, Ieff ≥ 1 and Ieff = 1
only when (q̃h, ũh) = (p,−∇p).

In the first numerical test, we consider an exact potential field given by the quartic polynomial
p(x, y) = 1000x2(1−x)2y(1−y)2, whereas in the second example we employ a symmetric oscillatory
Gaussian potential field given by p(x, y) = e−α((x−0.5)2+(y−0.5)2) cos(β(x − 0.5)) cos(β(y − 0.5)),
where α controls the Gaussian steepness and β the frequency of the cosine wave—we adopt α = 20
and β = 10 which provides a decent balance between complexity and smoothness.

The analysis is carried out for five levels of refinement using ∆x = ∆y ∈ { 0.1
2n }

4
n=0. Figure 2

shows the contours of the true errors and the estimated errors for the finest grid resolution. In both
cases, we can see that the error estimators effectively capture the zones of larger errors. Figure 3
shows the convergence rates and the efficiency indices as a function of the number of grid cells.
There are two important points to remark: (i) The majorant MLC decreases at the same (linear)
rate as the true error |||p− p̃h|||, and (ii) Ieff → 1 as the number of cells increases.

In conclusion, we have successfully obtained guaranteed and fully computable error estimates
for mimetic differences of the Corbino-Castillo type. Importantly, error fields such as those from
Fig. 2 can be used to effectively guide adaptive mesh refinement/coarsening strategies.
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Figure 3: Convergence rates and efficiency indices. Left: Quartic field. Right: Symmetric
oscillatory Gaussian field. Source: Authors.
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