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Abstract. In this work, we present a two-fold result: (1) the generalization of a nonlocal pair inter-
action model recently introduced in [6] and (2) the construction of a novel semi-discrete approach by
using the weak asymptotic method as introduced in [1]. We ensure that the new semi-discrete scheme
satisfies an entropy inequality that recovers the local entropy inequality associated to the correspond-
ing nonlocal model, subject to any C1(Rn) flux function with initial data u0 ∈ L1(Rn) ∩ L∞(Rn).
We will also state and explain the main ideas of some results (this is a work in progress) that allows
us to remove the boundedness of the initial data instead of assuming the more restrictive assumption
Total Variation Bounded for the proposed new class of semi-discrete convergent schemes. Indeed,
by using results of the work [4], we also ensure existence, uniqueness and L1(Rn) stability with
initial data belonging only to L1(Rn). Some numerical results are presented and discussed in the
efforts to justify the reliability, but also verifying the theory acquired.
Keywords. Nonlocal Conservation Laws; Weak Asymptotic Method; Semi-discrete Schemes

1 Introduction
In many models developed to describe physical phenomena, the classical framework of partial

differential equations may not be sufficient to accurately capture certain effects as fundamental
singularities [5]. To achieve a more precise physical description, nonlocal models have been intro-
duced, as illustrated in [2, 5]. In this work, we develop a semi-discrete formulation and perform a
weak asymptotic numerical analysis based on [1, 3] for the entropy solution of a nonlocal model.
Consider x ∈ Rn, t ∈ [0,+∞) and g : R2 → R a C1 function. We define:

Dh
i (g, u(x, t)) =

g (u(x, t), u(x+ hei, t))− g (u(x− hei, t), u(x, t))

h
, (1)

where ei is the i vector of the canonical basis of Rn. Consider the following nonlocal PDE:

ut +

n∑
i=1

[Hi(u)]xi +

n∑
i=1

∫ δi

0

Dh
i (gi, u(x, t))w

δi(h)dh = F (u), (2)

u(x, 0) = u0(x),

where each wδi(h) is a Dirac sequence with wδi(0) = 0 and each Hi is C1(R) functions. We will
always associate each nonlocal therm of (2) with the local associated case gi(u, u) = Gi(u).

This is a mixed model (local and non-local) that generalizes [6, 7]. In this work, we will state
and explain the following results:
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i) the equation (2) has a unique generalized entropy solution.

ii) When δi → 0, we will have the solution of the model (2) converging to the solution of the
associated equation with the local function [Hi(u) +Gi(u)]x.

iii) If gi, Hi has bounded derivative, so the same statements i) and ii) remain valid even when
considering only u0 ∈ L1(R).

2 Existence and Uniqueness of Entropy Solution
We will develop a notion of entropy solutions for generalized balance laws based on [8]. Consider

the following Cauchy problem

ut + div[H(u)] = W (u), (3)
u(x, 0) = u0 ∈ L∞(Rn),

where W is a operator on L∞(Rn) such that, for each R > 0 a positive constant, we have∫ T

0

∫
|x|≤R+C2t

|W (u)−W (v)| dx dt ≤
∫ T

0

∫
|x|≤R+C2t

K(t)|u− v| dx dt, (4)

where K(t) = K(t,M) with M = max{||u||∞, ||v||∞} and C2 is some positive constant such that

sup
|x|,|y|≤M

|H(x)−H(y)|
|x− y|

≤ C2. (5)

We say that u is entropy solution of (3) if it is a weak solution and attain the following inequality∫
A

|u− c|ϕt + sign(u− c)[H(u)−H(c)] · ∇ϕdA+ sign(u− c)W (u)dV ≥ 0. (6)

With this notion of entropy, we ensure the following result:

Theorem 2.1. Consider the PDE (3) with initial data u0(x) ∈ L∞(Rn). Suppose that u, v are
entropy solutions of (6) with initial data u0, v0 respectivelly, so we have the following inequality∫

|x|≤R

|u(x, t)− v(x, t)|dx ≤
∫
|x|≤R+C2t

|u(x, 0)− v(x, 0)|dxe
∫
K(t)dt. (7)

Moreover, if in additional we impose u0(x) ∈ L1(Rn) and∫ T

0

∫
Rn

|W (u)−W (v)|dxdt ≤
∫ T

0

∫
Rn

K(t)|u− v|dxdt, (8)

we have ∫
Rn

|u(x, t)− v(x, t)|dx ≤
∫
Rn

|u(x, 0)− v(x, 0)|dxe
∫
K(t)dt. (9)

For the equation (2), due the hypothesis of wδi/h ∈ L1(0, h), we have that the operator

W (u) =

n∑
i=1

∫ δi

0

Dh
i (gi, u(x, t))w

δi(h)dh− F (u) (10)
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is uniformly Lipschitz on L1(Rn)∩L∞(Rn), so the equation (2) has a unique entropy solution. On
the previous papers [6, 7] about the equation (2), they consider the one dimensional case

ut +

∫ δ

0

g (u(x, t), u(x+ h, t))− g (u(x− h, t), u(x, t))

h
wδ(h)dh = 0 (11)

with hypothesis of monotonicity of g. Here we generalize for any C1(R2) flux function g(·, ·).
This result was achieved using the fact that any C1(R2) flux function can be approximated by a
monotonic one. To achieve a entropy solution of (2) and the convergence of the nonlocal mode to
the local, we use the following semi discrete scheme

(uε)t = −
n∑

i=1

Dεi
i (hi, uε)−

n∑
i=1

ri∑
k=1

[gi(uεi , uεi+k)− gi(uεi−k, uεi)]W
i
k + F (uε) (12)

−
n∑
i=i

Khi(t)
(uε − uεi+1

)− (uεi−1
− uε)

εi
−

n∑
i=1

ri∑
k=1

Kgi(t)[(uεi − uεi+k)− (uεi−k − uεi)]W
i
k,

where W i
k =

1

kεi

∫ kεi
(k−1)εi

wδi(h)dh , Khi
(t) and Kgi(t) are C1(R) function such that,

Khi
(t) ≥ sup

x,y∈[M(t),M(t)]

(|(hi)x(x, y)|+ |(hi)y(x, y)|), (13)

Kgi(t) ≥ sup
x,y∈[M(t),M(t)]

(|(gi)x(x, y)|+ |(gi)y(x, y)|), (14)

where M(t) = ||u0||∞eKt and we also consider the following hypothesis

i) Consistency:
hi(u, u) = Hi(u). (15)

ii) gi, hi ∈ C1(R2).

iii) F is a C1(R) function such that F (0) = 0 with Lipschitz constant K on R i.e.

|F (x)| ≤ Kx ∀x ∈ R. (16)

For the homogeneous case (F = 0), we have a simple choice of Khi and Kgi that is

Khi = sup
x,y∈[M,M ]

(|(hi)x(x, y)|+ |(hi)y(x, y)|), (17)

Kgi = sup
x,y∈[M,M ]

(|(gi)x(x, y)|+ |(gi)y(x, y)|), (18)

where M = ||u0||∞. Under this hypothesis, we ensure that the scheme (12) is convergent and
attain the inequality ||uε(t)||∞ ≤ ||u0||∞eKt, moreover, if we take δi → 0, the nonlocal therm
converges for the local associated [G(u)]xi

.

3 Numerical Experiments
In this section, we will numerically solve the inviscid Burgers equation

ut +

[
u2

2

]
x

= 0, (19)
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and the Buckley-Leverett equation

ut +

[
u2

u2 + (1−u)2

2

]
x

= 0, (20)

and compare with the nonlocal model using the Lagrangian-Eulerian numerical flux

F (x, y) =
∆x

∆t
(x− y) +

(
H(x)

x
+

H(y)

y

)
(x+ y).

We will always plot both the local and nonlocal models for reference, but we will present
separately the analysis of the convergence of the model (with δ fixed) and the convergence of the
nonlocal model to the local model.

3.1 Convergence of the Nonlocal Numerical Scheme

In this subsection, we verify numerical convergence of the scheme for the nonlocal model.
First, we consider the initial condition

u0(x) = − sin(πx). (21)

In the labels, we describe the number of cells and the nonlocal graphics. We are considering the
domain (x, t) ∈ [−1, 1] × [0, 1], with ∆x = 1/128, 1/256, 1/512, ∆t = ∆x/4, and δ = 1/32 at the
time T = 0.125.

Figure 1: Burger’s equation and Buckley Leverett equations T = 0.125, δ = 1/32. Source: Author

For the Riemann problems, we consider the domain (x, t) ∈ [−1, 1]× [0, 1] with
∆x = 1/128, 1/256, 1/512, 1/1024, ∆t = ∆x/4, and δ = 1/32 at the time T = 0.125.

Consider the Burgers equation, Eq. (19), with initial data:

u0(x) =

{
1 if x > 0,

−1 if x ≤ 0
(22)

and the Buckley-Leverett equation, Eq. (20), with initial data:

u0(x) =

{
1 if x > 0,

0 if x ≤ 0.
(23)
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Figure 2: Burger’s equation equation and Buckley Leverett T = 0.125, δ = 1/32. Source: Author.

3.2 Convergence for the Local Model
Here we are going to keep δ/∆x = 1/8 and refine both at same time. We are considering

(x, t) ∈ [−1, 1] × [0, 1] with and ∆x = 1/128, 1/256, 1/512, 1/1024, ∆t = ∆x/4. For the Burgers
equation we consider u0(x) = −sin(πx). On the Buckley Leverett equation we consider the initial
data (23).

Figure 3: Burger’s equation and Buckley Leverett equation T = 0.125. Source: Author

4 Unbounded initial Data for DVV Schemes
After to stablish existence and L1 stability results for the equation (2), inspired on the works

of [4, 9], we wish to generalize the hypothesis under the initial data, that is, we consider only
u0 ∈ L1(Rn). The main difficult about a non linear hyperbolic model with unbounded initial data
is to ensure local integrability of the non linear term, that is, the volume integral∫

R
H(u)ϕxdx, (24)

may not be well defined for all ϕ ∈ C∞
c (Rn). So we consider the hypothesis of uniform Lipschitz

of the functions Hi, gi on (2). This hypothesis holds for some models of fluid dynamic, as the
Buckley-leveret equation (20). This led us to define a more general class of numerical schemes.
First, we need to introduce some concepts.

We say that a function u : Rn → R has D-variation bounded if

lim
h→0

n∑
i=1

∫
Rn

∣∣∣∣ [u(x)− u(x− eih)]− [u(x+ hei)− u(x)]

h

∣∣∣∣ dx < ∞. (25)
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On the next result, we establish the connection of this class of functions with BV functions.

Lemma 4.1. Consider f : Rn → R a BV function, then

1

n
lim
h→0

n∑
i=1

∫
Rn

∣∣∣∣u(x)− u(x− eih)

h

∣∣∣∣ dx ≤ TV (u). (26)

Moreover, the following limit holds

lim
h→0

n∑
i=1

∫
Rn

∣∣∣∣ [u(x)− u(x− eih)]− [u(x+ hei)− u(x)]

h

∣∣∣∣ dx = 0. (27)

Now introduce a class of methods that generalize TV S. Denote by

D2
i (u) =

[u(x)− u(x− eih)]− [u(x+ hei)− u(x)]

h
. (28)

We say that a scheme is DV V (double variation vanishing) if

lim
h→0

n∑
i=1

∫
Rn

∣∣D2
i (uε(t, x))

∣∣ dx → 0 (29)

uniformly on ε. Due the lemma(4.1), we have that any TV S method is DDV, so we have the
continence under the hypothesis of initial data u0 ∈ BV ∩ L∞

Monotone ⊂ TVD ⊂ TV Stable ⊂ DVV ⊂ DVC.

For this analysis, we use the following semi-discrete scheme

(uε)t = −
n∑

i=1

Dεi
i (hi, uε)−

n∑
i=1

ri∑
k=1

[gi(uεi , uεi+k)− gi(uεi−k, uεi)]W
i
k + F (uε) (30)

uε(x, 0) = u0 ∈ L1(Rn). (31)

and we ensure the following theorem

Theorem 4.1. Consider the following PDE (30) with gi, hi ∈ C1(Rn) are global Lipschitz functions
with Lipschitz constant K, gi(0, 0) = hi(0, 0) = 0, attain (15) and F attain (16), so the PDE has
a unique local classical solution on t ∈ [0,+∞).

The following result ensure L1 stability of our approximation

Theorem 4.2. Consider uε, vε solutions of (30) with initial data u0, v0 respectively, so:

||uε(t1)− vε(t1)||L1(Rn)e
−2Kt1 +

∫ T

0

||W (uε(t))−W (vε(t))||L1(Rn)e
−2ktdt ≥ ||uε(t2)− vε(t2)||L1(Rn)e

−2Kt2

(32)

where t2, t1 ∈ [0, T ], t1 < t2 and

W (uε) = K

(
n∑
i=i

(uε − uεi+1) − (uεi−1 − uε)

εi
+

n∑
i=1

ri∑
k=1

[(uεi − uεi+k)− (uεi−k − uεi)]W
i
k

)
. (33)

With the results above we ensure that if the scheme (30) defines a DVV method, so it converges
for the entropy solution of (2) with u0 ∈ L1(Rn), so we have the following result

Theorem 4.3. Consider the PDE (2) with Hi, F ∈ C1(R), gi ∈ C1(R2) with a uniform Lipschitz
constant K and u0(x) ∈ L1(Rn). So it has a unique entropy solution, moreover, when δi → 0, we
will have the solution of the model (2) converging to the solution of the associated equation with
the local function [Hi(u) +Gi(u)]x.
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5 Conclusions
In this work, we presented and discussed a generalization of a nonlocal pair iteration model,

firstly introduced on [6] and a new semi-discrete approach via the weak asymptotic method [1].
Due to our semi-discrete approach, we were able to develop a class of robust numerical methods, in
a solid basis, that capture the correct nonlocal solution and recover the nonlocal limit to the local
form of the underlying model. Moreover, we found the effectiveness of the combination of the weak
asymptotic method and Kruzhkov’s theory of balance laws to ensure the existence, uniqueness
and L1 -stability of the unique entropy solution for the nonlocal nonlinear equation (1). The new
approach introduced in this work also allows us to remove the hypothesis of boundness of the initial
data and establish uniqueness of weak solutions broader than one provided by classical numerical
methods in the specific TV-class of regularity. Finally, numerical experiments were presented to
justify the reliability of the proposed semi-discrete scheme, which is also supported with respect
to the acquired theory for nonlocal models of type (1).
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