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Abstract. In this work, we present a two-fold result: (1) the generalization of a nonlocal pair inter-
action model recently introduced in [6] and (2) the construction of a novel semi-discrete approach by
using the weak asymptotic method as introduced in [1]. We ensure that the new semi-discrete scheme
satisfies an entropy inequality that recovers the local entropy inequality associated to the correspond-
ing nonlocal model, subject to any C*(R™) flux function with initial data uo € L*(R™) N L™ (R™).
We will also state and explain the main ideas of some results (this is a work in progress) that allows
us to remove the boundedness of the initial data instead of assuming the more restrictive assumption
Total Variation Bounded for the proposed new class of semi-discrete convergent schemes. Indeed,
by using results of the work [4], we also ensure existence, uniqueness and L'(R™) stability with
initial data belonging only to L'(R™). Some numerical results are presented and discussed in the
efforts to justify the reliability, but also verifying the theory acquired.
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1 Introduction

In many models developed to describe physical phenomena, the classical framework of partial
differential equations may not be sufficient to accurately capture certain effects as fundamental
singularities [5]. To achieve a more precise physical description, nonlocal models have been intro-
duced, as illustrated in [2, 5]. In this work, we develop a semi-discrete formulation and perform a
weak asymptotic numerical analysis based on [1, 3] for the entropy solution of a nonlocal model.
Consider z € R", ¢ € [0, +00) and g : R? — R a C! function. We define:

Df(g,u(w,t)) _ g (U(,’E,t)7u(.’li + heiyt)) ; g (’LL((E — hei,t),u(%t))’ (1)

where e; is the i vector of the canonical basis of R”. Consider the following nonlocal PDE:

n n 5;
et Sl + 3 [ Dl ute, ) (= Fa), @
1=1 =1
u(z,0) = up(x),

where each w? (h) is a Dirac sequence with w® (0) = 0 and each H; is C*(R) functions. We will
always associate each nonlocal therm of (2) with the local associated case g;(u,u) = G;(u).

This is a mixed model (local and non-local) that generalizes [6, 7]. In this work, we will state
and explain the following results:
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i) the equation (2) has a unique generalized entropy solution.

ii) When 0; — 0, we will have the solution of the model (2) converging to the solution of the
associated equation with the local function [H;(u) 4+ G;(u)],.

iii) If g;, H; has bounded derivative, so the same statements i) and ii) remain valid even when
considering only ug € L' (R).

2 Existence and Uniqueness of Entropy Solution

We will develop a notion of entropy solutions for generalized balance laws based on [8]. Consider
the following Cauchy problem

ug + div[H (u)] = W(u), (3)
u(x,0) = ug € L= (R"),

where W is a operator on L>°(R"™) such that, for each R > 0 a positive constant, we have

T
/ / W () — |dmdt</ / Blu — o] da dt, )
0 |z|<R+Cat \z\<R+Czt

where K (t) = K(t, M) with M = max{||u||cc, ||v||oc} and Cj is some positive constant such that

sup MSQ_ (5)
el lyl<m T =yl

We say that u is entropy solution of (3) if it is a weak solution and attain the following inequality
/ |u — c|gs + sign(u — ¢)[H(u) — H(c)] - VPdA + sign(u — ¢)W (u)dV > 0. (6)
A

With this notion of entropy, we ensure the following result:

Theorem 2.1. Consider the PDE (3) with initial data ug(z) € L*(R™). Suppose that u,v are
entropy solutions of (6) with initial data ug, vy respectivelly, so we have the following inequality

/ n lu(z,t) —v(z, t)|de < / lu(z,0) — v(z, 0)|dzel KO, (7)

|z|<R+Cat

Moreover, if in additional we impose uo(z) € L' (R™) and

/ / (v)|dzdt </ [ KOl vldedr, 8)

/n lu(z, t) — v(z, t)|ds < / lu(z,0) — v(z, 0)|dzel KO, (9)

we have

For the equation (2), due the hypothesis of w’ /h € L'(0, h), we have that the operator

n 5;
— Z /0 D! (gi, u(z, t))w’ (h)dh — F(u) (10)
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is uniformly Lipschitz on L!(R™)N L>(R™), so the equation (2) has a unique entropy solution. On
the previous papers [6, 7] about the equation (2), they consider the one dimensional case

us +

/5 g (u(z,t),u(x + h,t)) ;9 (u(z — h’t)’u(x’t))w‘s(h)dh =0 (11)
0

with hypothesis of monotonicity of g. Here we generalize for any C'(R?) flux function g(-,-).
This result was achieved using the fact that any C*(R?) flux function can be approximated by a
monotonic one. To achieve a entropy solution of (2) and the convergence of the nonlocal mode to
the local, we use the following semi discrete scheme

n n T
(ue)e = — Z D7 (hi,ue) — Z Z[Qi(uawuari—k) = 9i(te,—k, ue, )Wy + F(ue) (12)
i=1 i=1 k=1
- (U‘E — u671+1) — (ufi—l — uE) She i
- ZKhz (t) ; - Z Kgq‘, (t)[(u& - u611+k’> - (U’Ei—k’ - uéq‘,)]Wk’
i=i g i=1 k=1
] ]- €4 . :
where W} = e f(lzfl)si w(h)dh , Ky, (t) and K, (t) are C*(R) function such that,
K, (t) = sup  ([(ha)a(z,y)| + [(hi)y(z,)]), (13)
z,y€[M(t),M(t)]
Ky, () = sup  ([(gi)a(z, )| + |(gi)y (z, 9)]), (14)
z,y€[M(t),M(t)]
where M (t) = ||ug||soe®? and we also consider the following hypothesis

i) Consistency:
hi(u,u) = H;(u). (15)

11) gi,hi € Cl(RZ)
iii) F is a C1(R) function such that F(0) = 0 with Lipschitz constant K on R i.e.

|F(z)| < Kz Vx € R. (16)

For the homogeneous case (F' = 0), we have a simple choice of K}, and K,, that is

Kn, = sup  ([(hi)a(2,y)| + [(hi)y (2, 9)]), (17)
z,y€[M,M]
Koo = sup  ([(g0)a(@,9)| + [(9:)y(z: 9)]), (18)
z,ye[M,M]
where M = ||up||co. Under this hypothesis, we ensure that the scheme (12) is convergent and

attain the inequality ||uc(t)||co < ||uo]|cce®?, moreover, if we take §; — 0, the nonlocal therm

converges for the local associated [G(u)]y;, .

3 Numerical Experiments

In this section, we will numerically solve the inviscid Burgers equation
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and the Buckley-Leverett equation

Ut+
u? +

u?
o 0 (20)
2 T
and compare with the nonlocal model using the Lagrangian-Eulerian numerical flux

Fle) = 3o+ (24 2 @iy,

We will always plot both the local and nonlocal models for reference, but we will present
separately the analysis of the convergence of the model (with § fixed) and the convergence of the
nonlocal model to the local model.

3.1 Convergence of the Nonlocal Numerical Scheme

In this subsection, we verify numerical convergence of the scheme for the nonlocal model.
First, we consider the initial condition

up(x) = —sin(mwz). (21)
In the labels, we describe the number of cells and the nonlocal graphics. We are considering the

domain (z,t) € [-1,1] x [0,1], with Az = 1/128,1/256,1/512, At = Ax/4, and § = 1/32 at the
time T = 0.125.

oo — loca-256l

— nl-128
— nl-256
nl-512

P2
o

-1.00 -0.75 -050 -025 000 025 050 075 100 =100 -075 -0.50 -025 000 025 050 075 100

— loca-2561
— nl-128 075
— nl-256

nl-312 0.50

0.25

000

/( 0.5

—0.50

-0.75

Figure 1: Burger’s equation and Buckley Leverett equations 7' = 0.125,§ = 1/32. Source: Author

For the Riemann problems, we consider the domain (z,t) € [—1,1] x [0, 1] with
Az =1/128,1/256,1/512,1/1024, At = Az /4, and 6 = 1/32 at the time T = 0.125.
Consider the Burgers equation, Eq. (19), with initial data:

1 ifx>0
_ ’ 22
up(z) {_1 iz <0 (22)

and the Buckley-Leverett equation, Eq. (20), with initial data:

1 ifz>0
= ’ 23
uo(z) {O if z <0. (23)
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Figure 2: Burger’s equation equation and Buckley Leverett T' = 0.125,6 = 1/32. Source: Author.

3.2 Convergence for the Local Model

Here we are going to keep 0/Ax = 1/8 and refine both at same time. We are considering
(x,t) € [-1,1] x [0,1] with and Az = 1/128,1/256,1/512,1/1024, At = Az/4. For the Burgers

equation we consider ug(z) = —sin(mz). On the Buckley Leverett equation we consider the initial
data (23).
10 —_— -
10 — loca-256 — ';f:sfﬁ
o7 — ::;223 08 k512
050 nl-512 — 1024
— nl-1024 — ni-2048
025 06
0.00
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~1.00 00 I I I I I I ] T ]
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Figure 3: Burger’s equation and Buckley Leverett equation T = 0.125. Source: Author

4 Unbounded initial Data for DVV Schemes

After to stablish existence and L! stability results for the equation (2), inspired on the works
of [4, 9], we wish to generalize the hypothesis under the initial data, that is, we consider only
up € L*(R™). The main difficult about a non linear hyperbolic model with unbounded initial data
is to ensure local integrability of the non linear term, that is, the volume integral

/ H(u)p,dz, (24)
R

may not be well defined for all ¢ € C2°(R™). So we consider the hypothesis of uniform Lipschitz
of the functions H;, g; on (2). This hypothesis holds for some models of fluid dynamic, as the
Buckley-leveret equation (20). This led us to define a more general class of numerical schemes.
First, we need to introduce some concepts.

We say that a function u : R™ — R has D-variation bounded if

n

> [

i=1

[u(z) — u(z — e;h)] — [u(z + he;) — u(z)]
h

dz < oo. (25)

DOI: 10.5540/03.2026.012.01.0284 010284-5 © 2026 SBMAC


http://dx.doi.org/10.5540/03.2026.012.01.0284

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

On the next result, we establish the connection of this class of functions with BV functions.
Lemma 4.1. Consider f : R" - R a BV function then

ezh)
n %IL%Z L ‘
Moreover, the following limit holds

[u(z) — u(x — e;h)] — [u(z + he;) — u(z)]
h

dx < TV (u). (26)

dr = 0. (27)

Now introduce a class of methods that generalize TV'S. Denote by

[u(z) — u(x — e;h)] — [u(z + he;) — u(z)]
- .
We say that a scheme is DV'V (double variation vanishing) if

D2 (u) = (28)

hmZ/ |D? (uc(t, )| dz — 0 (29)

h—0
uniformly on €. Due the lemma(4.1), we have that any TV.S method is DDV, so we have the
continence under the hypothesis of initial data ug € BV N L*>
Monotone C TVD C TV Stable ¢ DVV C DVC.

For this analysis, we use the following semi-discrete scheme

n

=N D5 (i) = 30 it e, 1) — gilute, g ue Wi+ Flu)  (30)
=1

i=1 k=1
ue(z,0) = ug € L*(R™). (31)
and we ensure the following theorem

Theorem 4.1. Consider the following PDE (30) with g;, h; € C*(R™) are global Lipschitz functions
with Lipschitz constant K, g;(0,0) = h;(0,0) = 0, attain (15) and F attain (16), so the PDE has
a unique local classical solution on t € [0, +00).

The following result ensure L' stability of our approximation

Theorem 4.2. Consider u.,ve solutions of (30) with initial data ug, vy respectively, so:

T
fue(t2) = oeCtlla e [ W ac(t) = Woa®) syt = [fuelte) = velt)l | e
0

(32)
where ta,t; € [0,T], t; < to and
(e — Uy — (Ue,_, — URgeL :
W(u) = K +1 = e k) — (e —u W) (33
- (32 U 20 S S )~ ok R - )

With the results above we ensure that if the scheme (30) defines a DVV method, so it converges
for the entropy solution of (2) with ug € L'(R™), so we have the following result

Theorem 4.3. Consider the PDE (2) with H;, F € C'(R), g; € C*(R?) with a uniform Lipschitz
constant K and ug(z) € L*(R™). So it has a unique entropy solution, moreover, when §; — 0, we

will have the solution of the model (2) converging to the solution of the associated equation with
the local function [H;(u) + Gi(u)]s.
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5 Conclusions

In this work, we presented and discussed a generalization of a nonlocal pair iteration model,
firstly introduced on [6] and a new semi-discrete approach via the weak asymptotic method [1].
Due to our semi-discrete approach, we were able to develop a class of robust numerical methods, in
a solid basis, that capture the correct nonlocal solution and recover the nonlocal limit to the local
form of the underlying model. Moreover, we found the effectiveness of the combination of the weak
asymptotic method and Kruzhkov’s theory of balance laws to ensure the existence, uniqueness
and L' -stability of the unique entropy solution for the nonlocal nonlinear equation (1). The new
approach introduced in this work also allows us to remove the hypothesis of boundness of the initial
data and establish uniqueness of weak solutions broader than one provided by classical numerical
methods in the specific TV-class of regularity. Finally, numerical experiments were presented to
justify the reliability of the proposed semi-discrete scheme, which is also supported with respect
to the acquired theory for nonlocal models of type (1).
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