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Abstract. In this work we consider the Three-Field finite element formulation for elliptic prob-
lems. In the original setting, not all combinations of spaces will lead to stable formulations, and
two independent inf-sup conditions must be satisfied. One way to relax such constraint is to intro-
duce stabilizations terms, allowing more space choices. Our goal is to propose a stabilized scheme
that allows different combinations of polynomials for the unknowns involved. We explore here the
possibility of employing the three-field formulation as a direct method, i.e., no submeshes involved.
We show coercivity and convergence results in a suitable mesh dependent norm. Efficient imple-
mentation of the method is still possible, as static condensation of the unknowns can be performed
at the element level, in parallel. We present numerical results displaying the performance of the
method.
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1 Introduction

We introduce some definitions and notations commonly adopted to construct weak formulations
in broken function spaces associate with Discontinuous Galerkin (DG) and hybrid methods. Let
the following second order elliptic model problem: Find the scalar variable u : Q — R such that

—Au=f, inQ (1)

u=0 onTl

where Q C R?, d = 2,3, is an open bounded domain with a Lipschitz continuous boundary T,
A is the Laplacian operator and f € L?(Q) is the source term . We recall some basic results on
well known classes of primal DG and hybrid formulations for elliptic problems. Let 7, = {K} be a
regular finite element partition of the domain Q and let &, := {e; e is an edge of K for all K € T}
denote the set of all edges of the mesh 7y, 5}? := &, NI is the set of edges of &, that lie on the
boundary I' and & := &, \ S}? the set of interior edges. We set n the unit normal vector on I'" and
ng the exterior normal vector defined on 0K, K € T;. Consider also the following broken Sobolev
spaces

HY(T) = {v e L}(Q);v|x € H'(K),K € Tp,} A= ] B V?0K) (2)
KeTy

Hy'?(&n) = {v]e,, v € Hy(2)}
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The three-field domain decomposition method [5] associated to the model problem (1) is: Find
[u, \, @] € HY(T;) x A x HY/?(&,) such that

Z/KVu.Vvdx— Z/é)KA(v—ﬁ)ds— Z/aK,u(u—ﬁ)ds: Z/Kfvdx (3)

KeTh KeTn KeTh KeTh

for all [v, 11, 8] € HY(T) x A x HY/2(&p).

2 Hybrid Formulation

We start by introducing the concept of jump [-] and average {-} of functions on the interfaces
e€éy. Letee 52 be an edge shared by elements K1, Ko € T;,. Consider n. the unit normal vector
on e pointing from K; to K. For a function w defined in K7 U K5, possibly discontinuous across e,
we denote w; := (w|k,)|e, i = 1,2. If v € L2(K; U K3) is a scalar function and 7 € [L?(K; U K3)]?
is a vectorial function, we then define its averages and jumps as

{v}:= %(vl + v2) [v] := (v1 — v2)n, (4)
{r}:= %(7’1 + 7o) [7] := (11 — 72) - n,

For a boundary edge e € E,? N 0K, we consider simply the restrictions

[v] = {v} :==n [r]={r} = 7. (5)
We refer [6] for a more precise definition. Following [1], its possible to verify the identity
Z / T~ndes:/ [v] - {7} ds+/ {v}[7] ds. (6)
KeT, JOK &n o
We approximate the infinite dimensional spaces in (2) by the following broken polynomial spaces
ViF = {v, € L3(Q); vp|x € Pp(K), VK € Ty} € HY(Th)
QY = {\, € L*(0K); Myle =Pp(e), Ve € K, VK € T;,} C A (7)
M} = {6, € CO(EL); tnle €Pyle), Ve € EY, 8], =0, Ve &Y c HY?(E).
In what follows we consider the notation: Let W;, = Vh”“ X Qp x M, ,ll and uy,,v, € Wy such that

wy, = (Up, Ap, Up) and v, = (vp, pr, Op) for up, v, € th, Any fbp € Q’,fL and 1,0 € M,ll Given
wy, = (up, An, Up) € Wy, we write uf := (up, —Ap, ) € Wi,

2.1 The Multiscale-Hybrid-Hybrid-Mixed Method - MH?*M

The MH2M method is a numerical method to solve a symmetric positive definite global problem
posed on the interfaces of the mesh. This method comes from the three-field formulation (3) going
through static condensation steps, under suitable compatibility conditions. This method can be
presented as: Find u, € W}, such that

Z/KVquvhdxf Z/@K)\h(vhfﬁh)dsf Z/aKuh(uhfﬁh)ds: Z/Kfvhdx,

= KeT, KeT, KeT,
(8)
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for all v, € Wj,. Stability of the MH?M formulation depends on the choice of the finite element
spaces V}f, Q} and M }ZL More precisely, the the following two inf-sup conditions [4] must be satisfied

MR ds UrOp ds
sup Lo PO dS o sup o hnnds

> Clionllox (9)
onevie lvnllnx ueQq  llenllo

An unconditionally stable version of the Three-field formulation is presented next.

3 The Stabilized Three-Field Domain Decomposition Method

By adding two stabilization terms [4] in the three-field formulation (8), the full stabilized version
of this method is proposed as: Find w, € W}, such that

Ap (up,vy) = F(vy), (10)

for all v, € W, where the bilinear form Ay : Wj, x Wj, — R is defined as

Apg(uy,,vp) Z/Vuh Vouy, dx — Z/ An(vp — 0p,) ds

KeTn KeTy

- Z/ pn(up — p) ds + Z/ (Vup -ng — Ap)(Vop -ng — pn) ds - (11)

KeTy, KeTh,
+ﬁ2/ up — Up)(vy — Op) ds
KeTy

with 8= Bo/h, fo > 0 e a = —aph, ap > 0. From the identity (6), the bilinear form (11) can be

written as
Ap(uy,vy,) / Vuy, - Vop, de — Z / {pn}un] + {n}wvn] ds

KeTy 6650

£y / funl - Tl ds = 3 [ (Dl (Gon} = ) + Dund ({un} — ) ds (12)
ecly ec&y ¢

+ « Z (Vuh ‘e — Ap)(Vop - ne — pp) ds

ecéy,

+ 3 [ 280~ (o~ (o) ds

6650

for all v;, € W,

Remark 3.1. Note that our stabilization scheme differs from the one proposed in [3] since it
precludes the regqularity of the operator inside each element. That is particularly useful when the
problem is determined by L coefficients, or has multiscale aspects.

3.1 Stability of the Method

In this section we show the stability of the method for any choice of the polynomials degree of
the broken spaces V¥, Q7 and M}. The stability is verified for two cases: the first one is the full
stabilization, where both Lagrange multipliers A, and w; are stabilized; the second one, only the
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local Lagrange multiplier ) is stabilized. We prove the coercivity of the bilinear form Ag(:,-),
independent of the choice of finite element spaces, in the following norm

= Y [ Fwlaeen 3 [ a3 [imlras 03

KeTh KeTh e€g) "¢
1 N
+ 2 |uh\2ds+ - > iy — {un}? ds
€ e
ec&? 650

Theorem 3.1. (Full stabilization) Let cg > 0 sufficiently small and Sy > 0. There exists a
constant v > 0, independent of h, such that

Ap(wy,up) > Y|y F (14)
for all u;, € Wy,

Theorem 3.2. (Local stabilization and unconditional stability) Let By = 0 and o = —agh in the
bilinear form Ap : Wi, x W, — R introduced in (11). Define Gy, € QF, as

1. forn>1, 1, == =\ + f(uh —1y),
2. forn <1, i, == —Ap + =17 (up, — @),
where, for an edge e € &y, the local L?(e)-projection vy, of vy, € VIF is given by

/HZU}L/J,}L ds = /vh,uh ds, Y oupe€Py(e). (15)
Then, there exists a constant ¢ > 0 independent of h such that
Apr(wy, 1) 2 Cllug |- (16)

for all wy, € Wy, and such that w}, == [up, By, Up].

3.2 Static Condensation

For the stabilized method (10), the local variables wy, defined in each element K € 7, and Ap,
defined on the boundary K, can be eliminated at the element level by solving the following set
of problems in the pair [up, \p] :

Local problems: For each K € Ty, find [us, Ap] € ViF x Q7 such that
Ag([uh,)\hL[UhaMh])+B§(ah7[vhal~th]) :F([Uha,uh])7 V[Uha,uh] S th X QZ (17)

where the bilinear form AK : th x Qp — R is such that
Ag([uh,)\h} [V, 1n]) / Vuy, - Vo, doe — Apvp ds —/ ppup ds (18)
oK oK

+ / Oz(vuh ‘N — /\;L)(Vvh ‘N — uh) ds + / Bupvy, ds,
OK oK

The forms BE : M}L X V}f X Qpr —Rand F: V,f x Qp — R are defined as

BF (in, [on, pa]) = / pptp ds + Blupvp ds, (19)
OK oK
F(lon, on)) := Y | favnda, (20)
KeT, 'K

for all [vp,, pn, 0n] € VF x Q1 x M].
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5
Global problem: Find @), € M} such that
> Bii(ons [uns M) + Y Cff (i, o) =0, Yoy € Mj, (21)
KeTy, KeTy
with BE(-,-) as in (19), and CE € Lo(M];R) is such that
Ci (i, bp) = / Bl ds (22)
OK
for all 9, € M}. The stability of the local bilinear form A% (-,-) follows from
Ag([um )\h], [uh, _)\h]) = / ‘V’U,h|2 dx (23)
K

—|—a/ |Vuh~nK|2ds—a/ |)\h\2ds+5/ lup,|? ds
oK oK oK

with @ = —agh and 8 = By /h, for ag sufficiently small and Gy > 0.
For k =n =1 or n > [, we can solve exactly the local equation of the multiplier A\; on each
edge e € 0K, obtaining

1
)\h:VuhonK+a(uhfﬁh). (24)

Replacing the above expression for A, in the stabilized formulation (10) with 8 = 0, yields the
following weak form

/Vuh Voy, dx — Z/ (Vuyp, -ng)(vy, — 0p) ds — Z
KeTh

/ (V’Uh . nK)(uh - ﬁh) ds
0K

KeT, KeT
(25)
72/ (up, — Gp) (v, — 0p) dsz/fvhdx
KeTh oK @ KeTh

which is identical to the LDGC weak form [2] with « = —1/0.
Static condensation of all degree of freedom of [up, A\y] is always possible for any stable approx-
imation of MH2M.

3.3 Consistency and Continuity

The following assumptions are needed for consistency and continuity of the stabilized method

Definition 3.1. Let W, := H?(Ty,) x L*(&,) x L?(&y) so that Vi € H2(Ty), Q) C L*(&) and
M} c L2(&), where H2(Tp) := {v € L*(Q), v|x € H*(K), VK € Ty}. Consider henceforth that
the bilinear form Ag(-,-) admits an extension in its first argument to the space W,. We assume
that X € H=1/2(0Q) N L?(&y).

Let u be the solution of the model problem (1). We get consistency of the stabilized three-field
formulation if u, A := Vu-n € H~Y2(dQ) and @ := vo(u) € H01/2((‘3Q) solve (10). So, we can show
the following result.

Proposition 3.1. (Consistency) If u solves the model problem (1), then u, A := Vu - n and
U := ulg, solve the stabilized hybrid formulation (10).
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The boundedness of the bilinear form in the norm || - || g is also verified.

Proposition 3.2. (Continuity) There exists a constant n > 0, independent of h, such that

|Am (wy,,vp) | < nllug |ae ol g e (26)

for all u, € W, and all v, € W,

3.4 Error Estimate

The next result establish the rate of convergence of the numerical finite element solution
(up, Aptin) € Wy of the proposed method (10) to the exact solution (u, A, @) of the three-field
variational formulation (3).

Theorem 3.3. Let u := (u, A\, @) € W, the weak solution of the model problem (1), with A := Vu-n
and @ := ulg, . Let uy, := (up, An,0p) € Wy, the discrete solution of the stabilized hybrid formulation
(10). Then there exist a constant C' independent of h such that

lu—wpllme < C(WFulesr,o + B Anse, + Aulii). (27)

4 Numerical Results
Consider the domain € :=]0: 1[x]0 : 1]. Let the second order elliptical problem:

~Au=2(y*—y)+2(x*—2), nQ (28)
u=0 on JN.

The analytical solution is given by u(x,y) = (2% — z)(y? — y) and is depicted in the Figure 1.

0.07
0.06
0.05
0.04
0.03
0.02
0.01

fxy)

Figure 1: Exact solution. Source: Own elaboration.

The mesh 7}, is a uniform triangulation of 2. We perform the method with polynomials of degree
up to three in the interior of each element K € 7T, and up to four on the interfaces e € &,. The
stabilization parameters « and [ are determined by solving local generalized eigenvalue problems,
coming from localized discrete inverse estimates. We plot in the Figure 2 the curves of error in the
norm | - ||gr defined in (13) with polynomial interpolation spaces Py, — P,, — IP; to approximate the
function, fluz and the trace, respectively. Note that, for all the conbinations (k,n,[) in the Figure
2, the finite element spaces do not satisfies the inf — sup conditions (9). We plot the graph of a
numerical solution in the Figure 3.
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