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The Stabilized Three-Field Domain Decomposition Method
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Abstract. In this work we consider the Three-Field finite element formulation for elliptic prob-
lems. In the original setting, not all combinations of spaces will lead to stable formulations, and
two independent inf-sup conditions must be satisfied. One way to relax such constraint is to intro-
duce stabilizations terms, allowing more space choices. Our goal is to propose a stabilized scheme
that allows different combinations of polynomials for the unknowns involved. We explore here the
possibility of employing the three-field formulation as a direct method, i.e., no submeshes involved.
We show coercivity and convergence results in a suitable mesh dependent norm. Efficient imple-
mentation of the method is still possible, as static condensation of the unknowns can be performed
at the element level, in parallel. We present numerical results displaying the performance of the
method.

Keywords. Hybrid Method, Stabilized Method, Hybrid Mixed Method, Finite Element Method,
Multiscale-Hybrid-Hybrid Mixed Method, Numerical Nethod

1 Introduction

We introduce some definitions and notations commonly adopted to construct weak formulations
in broken function spaces associate with Discontinuous Galerkin (DG) and hybrid methods. Let
the following second order elliptic model problem: Find the scalar variable u : Ω → R such that

−∆u = f, in Ω (1)
u = 0 on Γ

where Ω ⊂ Rd, d = 2, 3, is an open bounded domain with a Lipschitz continuous boundary Γ,
∆ is the Laplacian operator and f ∈ L2(Ω) is the source term . We recall some basic results on
well known classes of primal DG and hybrid formulations for elliptic problems. Let Th = {K} be a
regular finite element partition of the domain Ω and let Eh := {e; e is an edge of K for all K ∈ Th}
denote the set of all edges of the mesh Th, E∂

h := Eh ∩ Γ is the set of edges of Eh that lie on the
boundary Γ and E0

h := Eh \ E∂
h the set of interior edges. We set n the unit normal vector on Γ and

nK the exterior normal vector defined on ∂K, K ∈ Th. Consider also the following broken Sobolev
spaces

H1(Th) := {v ∈ L2(Ω); v|K ∈ H1(K),K ∈ Th} Λ :=
∏

K∈Th

H−1/2(∂K) (2)

H1/2
0 (Eh) := {v|Eh

, v ∈ H1
0(Ω)}
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The three-field domain decomposition method [5] associated to the model problem (1) is: Find
[u, λ, û] ∈ H1(Th)× Λ× H1/2

0 (Eh) such that∑
K∈Th

∫
K

∇u · ∇v dx−
∑

K∈Th

∫
∂K

λ(v − v̂) ds−
∑

K∈Th

∫
∂K

µ(u− û) ds =
∑

K∈Th

∫
K

fv dx (3)

for all [v, µ, v̂] ∈ H1(Th)× Λ× H1/2
0 (Eh).

2 Hybrid Formulation
We start by introducing the concept of jump J·K and average {·} of functions on the interfaces

e ∈ Eh. Let e ∈ E0
h be an edge shared by elements K1,K2 ∈ Th. Consider ne the unit normal vector

on e pointing from K1 to K2. For a function w defined in K1∪K2, possibly discontinuous across e,
we denote wi := (w|Ki)|e, i = 1, 2. If v ∈ L2(K1 ∪K2) is a scalar function and τ ∈ [L2(K1 ∪K2)]

d

is a vectorial function, we then define its averages and jumps as

{v} :=
1

2
(v1 + v2) JvK := (v1 − v2)ne (4)

{τ} :=
1

2
(τ1 + τ2) JτK := (τ1 − τ2) · ne

For a boundary edge e ∈ E∂
h ∩ ∂K1, we consider simply the restrictions

JvK = {v} := v1 JτK = {τ} = τ1. (5)

We refer [6] for a more precise definition. Following [1], its possible to verify the identity∑
K∈Th

∫
∂K

τ · nKv ds =

∫
Eh

JvK · {τ} ds+
∫
E0
h

{v}JτK ds. (6)

We approximate the infinite dimensional spaces in (2) by the following broken polynomial spaces

V k
h := {vh ∈ L2(Ω); vh|K ∈ Pk(K), ∀K ∈ Th} ⊂ H1(Th)

Qn
h = {λh ∈ L2(∂K); λh|e = Pn(e), ∀ e ∈ ∂K, ∀K ∈ Th} ⊂ Λ (7)

M l
h = {v̂h ∈ C0(Eh); v̂h|e ∈ Pl(e), ∀ e ∈ E0

h, v̂|e = 0, ∀ e ∈ E∂
h} ⊂ H

1/2
0 (Eh).

In what follows we consider the notation: Let Wh := V k
h × Qn

h ×M l
h and uh, vh ∈ Wh such that

uh := (uh, λh, ûh) and vh := (vh, µh, v̂h) for uh, vh ∈ V k
h , λh, µh ∈ Qk

h and ûh, v̂h ∈ M l
h. Given

uh = (uh, λh, ûh) ∈ Wh , we write u∗
h := (uh,−λh, ûh) ∈ Wh.

2.1 The Multiscale-Hybrid-Hybrid-Mixed Method - MH2M
The MH2M method is a numerical method to solve a symmetric positive definite global problem

posed on the interfaces of the mesh. This method comes from the three-field formulation (3) going
through static condensation steps, under suitable compatibility conditions. This method can be
presented as: Find uh ∈ Wh such that∑
K∈Th

∫
K

∇uh · ∇vh dx−
∑

K∈Th

∫
∂K

λh(vh − v̂h) ds−
∑

K∈Th

∫
∂K

µh(uh − ûh) ds =
∑

K∈Th

∫
K

fvh dx,

(8)
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for all vh ∈ Wh. Stability of the MH2M formulation depends on the choice of the finite element
spaces V k

h , Qn
h and M l

h. More precisely, the the following two inf-sup conditions [4] must be satisfied

sup
vh∈V k

h

∫
∂K

µhvh ds

∥vh∥h,K
≥ C∥µh∥∂K sup

µh∈Qn
h

∫
∂K

µhv̂h ds

∥µh∥∂
≥ C∥v̂h∥∂K (9)

An unconditionally stable version of the Three-field formulation is presented next.

3 The Stabilized Three-Field Domain Decomposition Method
By adding two stabilization terms [4] in the three-field formulation (8), the full stabilized version

of this method is proposed as: Find uh ∈ Wh such that

AH(uh, vh) = F (vh), (10)

for all vh ∈ Wh, where the bilinear form AH : Wh ×Wh → R is defined as

AH(uh, vh) :=
∑

K∈Th

∫
K

∇uh · ∇vh dx−
∑

K∈Th

∫
∂K

λh(vh − v̂h) ds

−
∑

K∈Th

∫
∂K

µh(uh − ûh) ds+ α
∑

K∈Th

∫
∂K

(∇uh · nK − λh)(∇vh · nK − µh) ds (11)

+ β
∑

K∈Th

∫
∂K

(uh − ûh)(vh − v̂h) ds

with β = β0/h, β0 > 0 e α = −α0h, α0 > 0. From the identity (6), the bilinear form (11) can be
written as

AH(uh, vh) :=
∑

K∈Th

∫
K

∇uh · ∇vh dx−
∑
e∈E0

h

∫
e

({µh}JuhK + {λh}JvhK ds

+
∑
e∈Eh

∫
e

β

2
JuhK · JvhK ds−

∑
e∈E0

h

∫
e

(JλhK({vh} − v̂h) + JµhK({uh} − ûh)) ds (12)

+ α
∑
e∈Eh

∫
e

(∇uh · ne − λh)(∇vh · ne − µh) ds

+
∑
e∈E0

h

∫
e

2β(ûh − {uh})(v̂h − {vh}) ds

for all vh ∈ Wh.

Remark 3.1. Note that our stabilization scheme differs from the one proposed in [3] since it
precludes the regularity of the operator inside each element. That is particularly useful when the
problem is determined by L∞ coefficients, or has multiscale aspects.

3.1 Stability of the Method
In this section we show the stability of the method for any choice of the polynomials degree of

the broken spaces V k
h , Qn

h and M l
h. The stability is verified for two cases: the first one is the full

stabilization, where both Lagrange multipliers λh and ûh are stabilized; the second one, only the
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local Lagrange multiplier λh is stabilized. We prove the coercivity of the bilinear form AH(·, ·),
independent of the choice of finite element spaces, in the following norm

∥uh∥2HH :=
∑

K∈Th

∫
K

|∇uh|2 dx+ h
∑

K∈Th

∫
∂K

λ2
h ds+

1

h

∑
e∈E0

h

∫
e

|JuhK|2 ds (13)

+
1

h

∑
e∈E∂

h

∫
e

|uh|2 ds+
1

h

∑
e∈E0

h

∫
e

|ûh − {uh}|2 ds

Theorem 3.1. (Full stabilization) Let α0 > 0 sufficiently small and β0 > 0. There exists a
constant γ > 0, independent of h, such that

AH(uh, u
∗
h) ≥ γ∥uh∥2HH (14)

for all uh ∈ Wh.

Theorem 3.2. (Local stabilization and unconditional stability) Let β0 = 0 and α = −α0h in the
bilinear form AH : Wh ×Wh → R introduced in (11). Define µh ∈ Qn

h, as

1. for n ≥ l, µh := −λh + 1
α (uh − ûh),

2. for n < l, µh := −λh + 1
αΠ

n
h(uh − ûh),

where, for an edge e ∈ Eh, the local L2(e)-projection Πn
hvh of vh ∈ V k

h is given by∫
e

Πn
hvhµh ds =

∫
e

vhµh ds, ∀ µh ∈ Pn(e). (15)

Then, there exists a constant ζ > 0 independent of h such that

AH(uh, u
∗
h) ≥ ζ∥uh∥2HH . (16)

for all uh ∈ Wh, and such that u∗
h := [uh, µh, ûh].

3.2 Static Condensation
For the stabilized method (10), the local variables uh, defined in each element K ∈ Th, and λh

defined on the boundary ∂K, can be eliminated at the element level by solving the following set
of problems in the pair [uh, λh] :

Local problems: For each K ∈ Th, find [uh, λh] ∈ V k
h ×Qn

h such that

AK
H([uh, λh], [vh, µh]) +BK

H (ûh, [vh, µh]) = F ([vh, µh]), ∀ [vh, µh] ∈ V k
h ×Qn

h (17)

where the bilinear form AK
H : V k

h ×Qn
h → R is such that

AK
H([uh, λh], [vh, µh]) : =

∫
K

∇uh · ∇vh dx−
∫
∂K

λhvh ds−
∫
∂K

µhuh ds (18)

+

∫
∂K

α(∇uh · nK − λh)(∇vh · nK − µh) ds+

∫
∂K

βuhvh ds,

The forms BK
H : M l

h × V k
h ×Qn

h → R and F : V k
h ×Qn

h → R are defined as

BK
H (ûh, [vh, µh]) :=

∫
∂K

µhûh ds+

∫
∂K

βûhvh ds, (19)

F ([vh, v̂h]) :=
∑

K∈Th

∫
K

fhvh dx, (20)

for all [vh, µh, v̂h] ∈ V k
h ×Qn

h ×M l
h.
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Global problem: Find ûh ∈ M l
h such that∑

K∈Th

BK
H (v̂h, [uh, λh]) +

∑
K∈Th

CK
H (ûh, v̂h) = 0, ∀ v̂h ∈ M l

h (21)

with BK
H (·, ·) as in (19), and CK

H ∈ L2(M
l
h;R) is such that

CK
H (ûh, v̂h) :=

∫
∂K

βûhv̂h ds (22)

for all v̂h ∈ M l
h. The stability of the local bilinear form AK

H(·, ·) follows from

AK
H([uh, λh], [uh,−λh]) =

∫
K

|∇uh|2 dx (23)

+ α

∫
∂K

|∇uh · nK |2 ds− α

∫
∂K

|λh|2 ds+ β

∫
∂K

|uh|2 ds

with α = −α0h and β = β0/h, for α0 sufficiently small and β0 > 0.
For k = n = l or n ≥ l, we can solve exactly the local equation of the multiplier λh on each

edge e ∈ ∂K, obtaining

λh = ∇uh · nK +
1

α
(uh − ûh). (24)

Replacing the above expression for λh in the stabilized formulation (10) with β = 0, yields the
following weak form∑

K∈Th

∫
K

∇uh · ∇vh dx−
∑

K∈Th

∫
∂K

(∇uh · nK)(vh − v̂h) ds−
∑

K∈Th

∫
∂K

(∇vh · nK)(uh − ûh) ds

(25)

−
∑

K∈Th

∫
∂K

1

α
(uh − ûh)(vh − v̂h) ds =

∑
K∈Th

∫
K

fvh dx

which is identical to the LDGC weak form [2] with α = −1/β.
Static condensation of all degree of freedom of [uh, λh] is always possible for any stable approx-

imation of MH2M.

3.3 Consistency and Continuity
The following assumptions are needed for consistency and continuity of the stabilized method

Definition 3.1. Let W∗ := H2(Th) × L2(Eh) × L2(Eh) so that V k
h ⊂ H2(Th), Ql

h ⊂ L2(Eh) and
M l

h ⊂ L2(Eh), where H2(Th) := {v ∈ L2(Ω), v|K ∈ H2(K), ∀K ∈ Th}. Consider henceforth that
the bilinear form AH(·, ·) admits an extension in its first argument to the space W∗. We assume
that λ ∈ H−1/2(∂Ω) ∩ L2(Eh).

Let u be the solution of the model problem (1). We get consistency of the stabilized three-field
formulation if u, λ := ∇u ·n ∈ H−1/2(∂Ω) and û := γ0(u) ∈ H

1/2
0 (∂Ω) solve (10). So, we can show

the following result.

Proposition 3.1. (Consistency) If u solves the model problem (1), then u, λ := ∇u · n and
û := u|Eh

solve the stabilized hybrid formulation (10).
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The boundedness of the bilinear form in the norm ∥ · ∥HH is also verified.

Proposition 3.2. (Continuity) There exists a constant η > 0, independent of h, such that

|AH(uh, vh)| ≤ η∥uh∥HH∥vh∥HH (26)

for all uh ∈ W∗ and all vh ∈ Wh.

3.4 Error Estimate
The next result establish the rate of convergence of the numerical finite element solution

(uh, λhûh) ∈ Wh of the proposed method (10) to the exact solution (u, λ, û) of the three-field
variational formulation (3).

Theorem 3.3. Let u := (u, λ, û) ∈ W∗ the weak solution of the model problem (1), with λ := ∇u·n
and û := u|Eh

. Let uh := (uh, λh, ûh) ∈ Wh the discrete solution of the stabilized hybrid formulation
(10). Then there exist a constant C independent of h such that

∥u− uh∥HH ≤ C(hk|u|k+1,Ω + hn+1|λ|n+1,Eh
+ hl|u|l+1,Ω). (27)

4 Numerical Results
Consider the domain Ω := ]0 : 1[×]0 : 1[. Let the second order elliptical problem:

−∆u = 2(y2 − y) + 2(x2 − x), in Ω (28)
u = 0 on ∂Ω.

The analytical solution is given by u(x, y) = (x2 − x)(y2 − y) and is depicted in the Figure 1.

Figure 1: Exact solution. Source: Own elaboration.

The mesh Th is a uniform triangulation of Ω. We perform the method with polynomials of degree
up to three in the interior of each element K ∈ Th and up to four on the interfaces e ∈ Eh. The
stabilization parameters α and β are determined by solving local generalized eigenvalue problems,
coming from localized discrete inverse estimates. We plot in the Figure 2 the curves of error in the
norm ∥ · ∥HH defined in (13) with polynomial interpolation spaces Pk −Pn−Pl to approximate the
function, fluz and the trace, respectively. Note that, for all the conbinations (k, n, l) in the Figure
2, the finite element spaces do not satisfies the inf − sup conditions (9). We plot the graph of a
numerical solution in the Figure 3.
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Figure 2: Curves of convergence in the
HH-norm. Source: Own elaboration.

Figure 3: Numerical solution with h =
√
2/32

and (k, n, l) = (2, 1, 2). Source: Own elabora-
tion.
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