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Resumo. Extrair padroes dos dados é crucial na modelagem computacional, especialmente em
epidemiologia, onde a qualidade da informagdo é essencial. Redes neurais — convencionais ou in-
formadas por fisica — sdo métodos poderosos para essa aproximagdo. Neste trabalho, utilizamos
modelos epidemiologicos, com dados sintéticos e reais, para testar estes métodos, constatando a
superioridade das redes neurais informadas por fisica.

Palavras-chave. Redes Neurais, MLP, PINN, Dados Epidemiolégicos, Modelo SIR, Covid-19

1 Introducao

A compreensao de fendomenos fisicos e a capacidade de replicar seu comportamento sdo funda-
mentais para embasar decisoes estratégicas e orientar politicas publicas eficazes. Nesse contexto,
destaca-se a epidemiologia, area dedicada & modelagem matemaética da transmissao de doengas
contagiosas, cujos resultados dependem da qualidade e interpretacao de dados epidemiologicos. As
informacoes extraidas dessas observacoes permitem inferir padroes de propagagao de patogenos,
sendo essenciais para obter uma compreensao aprofundada sobre a dindmica das enfermidades [2].

Diante deste desafio, as redes neurais surgem como modelos computacionais capazes de assimilar
padroes complexos nos dados e reproduzi-los precisamente [6]. Contudo, um avanco significativo
ocorre com o surgimento das redes neurais informadas por fisica [9]. As redes neurais convencionais
e as informadas por fisica tém sido amplamente utilizadas para resolver problemas epidemiologicos
[1, 5, 10].

Neste trabalho, os dois tipos de redes neurais serao aplicados a dados epidemiolégicos regidos
pelo Modelo SIR [3], entdo, a abordagem com melhor desempenho foi aplicada a dados reais,
da doenga Covid-19, para validagdo. O trabalho esta estruturado da seguinte forma: a Secao 2
apresenta o Modelo SIR; a Se¢ao 3 descreve o primeiro tipo de rede neural utilizada neste trabalho;
a Secao 4 introduz a rede neural informada por fisica; a Secao 5 detalha os testes computacionais,
divididos entre dados sintéticos e reais; e, por fim, a Segao 6 apresenta as consideragoes finais.

2 Modelo SIR

Os modelos epidemiologicos compartimentais baseiam-se na divisao da populagdo em compar-
timentos distintos, fornecendo uma estrutura para analisar a propagacao de doencas infecciosas
e sua evolugao ao longo do tempo [2], destacando-se o Modelo SIR, desenvolvido por Kermack e
McKendrick [3]. Neste modelo se assume a hipdtese que o individuo adquire alguma enfermidade
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e permanece infectado até desenvolver imunidade permanente. Os individuos sdo dispostos de
acordo com os estados da doenga, sendo também denominados compartimentos. Convém ressaltar
que esses individuos integram a mesma populagao e nao estao fisicamente isolados, o que propicia
a interacao entre eles e possibilita a transicao entre os compartimentos. Assim, os estados sao clas-
sificados como: Suscetiveis (S), individuos saudaveis passiveis de infecgdo por contato; Infectados
(I), portadores ativos capazes de transmitir a doenga; e Recuperados (R), aqueles que adquiriram
imunidade. E importante destacar que as subpopulacoes sao funcoes temporais cuja soma equivale
a populagao total N, que é constante para qualquer tempo (¢) [2]. Ou seja:

S(t) + I(t) + R(t) = N. (1)

O Modelo SIR é definido por um Sistema de Equagoes Diferenciais Ordinarias, descrito pela
equagdo (2) [2, 3]. Onde f representa a taxa de contato, medindo a transi¢ao diaria de individuos
suscetiveis para infectados pelo contato com uma pessoa contaminada pela doenga. Por sua vez,
v é a taxa de recuperagao, definida como o inverso do tempo médio de recuperacao, em dias, que
indica o periodo em que o individuo permanece infectado.
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3 Rede Multi Layer Perceptron

As Redes Neurais Artificiais sao modelos de aprendizado de maquina capazes de aprender e
replicar padroes complexos a partir de observagoes de dados [6]. De modo geral, esses modelos
realizam o mapeamento do conjunto de entrada X para uma saida y através de um processo de
treinamento. Este processo consiste na busca do conjunto 6timo de parametros, denominados pesos
e viés (bias), que ira reduzir o erro entre a saida prevista e o valor verdadeiro minimizando uma
Funcdo de Perda (Loss Function) [6]. Neste contexto, uma métrica comumente empregada para
quantificar essa discrepancia é o erro médio quadrado (mean squared error, MSE), definida como:

n

MSE:%Z(%‘—%f- (3)

i=1

Tal que, g é a saida prevista, y é o valor verdadeiro e n é o nimero de observagoes.

Uma rede neural é definida por sua arquitetura, que ird estabelecer o nimero de camadas e nds,
ou neurdnios, que a compoe. Inicialmente, os dados sao recebidos pela camada de entrada, onde
sdo distribuidos e processados pelos nos, encaminhando a informagao para a camada seguinte,
denominada camada oculta. Este processo é reproduzido até alcangar a camada de saida, que
consolida o treinamento, fornecendo a resposta final do modelo. Esse fluxo de dados, denominado
feedforward, ocorre de maneira unidirecional, garantindo que a informagao transite da camada de
entrada até a saida sem retroalimentacgao. Este tipo de rede, com mais de uma camada oculta, é
denominado Multi Layer Perceptron (MLP) [6].

No decorrer do treinamento, aplica-se uma funcéo de ativacdo ¢ em cada camada, permitindo
que a rede aprenda relagbes complexas nos dados e introduza nao linearidade nas operagoes [6].
Sejam os pesos definidos como a matriz W € R»9s x tameentrada o o5 higs como o vetor b € R».
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E possivel descrever a operacao do feedforward em uma rede com k camadas como:
y = ok (W1 (- 05 (Watr (Wi +b1) +52) o+ by 1) + by ). (4)

Entao, o algoritmo Backpropagation é aplicado na equagao (4) para ajustar os parametros da rede
minimizando a loss function L. Este algoritmo calcula, de forma automatizada, o gradiente de L
em relacao aos pardmetros por meio da regra da cadeia. Os parametros sao atualizados se movendo
na diregao oposta aos gradientes, com base em uma taxa de aprendizado 7, conforme descrito na
equagao abaixo [6]:

OL
awid‘ '

wij(t+1) =wi ;) —n (5)

Onde, w; ;(t) representa o valor de peso atual e JZJ—’:‘J o gradiente da fungao de perda em relagao
a0 peso w; ;(1).

4 Redes Neurais Informadas por Fisica

O treinamento convencional de redes neurais é essencialmente baseado em dados e ignora co-
nhecimentos adquiridos a priori, ou seja, nao considera as leis fisicas que governam o sistema.
Neste contexto, foram elaboradas as Redes Neurais Informadas por Fisica (Physics-Informed Neu-
ral Network, PINNs) [9], que incorporam ao treinamento informagoes provenientes de modelos
matematicos que representam a fisica do problema. Assim, a PINN adiciona o residuo de equa-
¢oes diferenciais & loss function, buscando minimizar a soma entre o erro proveniente dos dados
e o residuo das equagdes (equagdo (10)). Essa integracao do conhecimento fisico atua como um
agente regularizador, restringindo o espaco de busca das solucoes admissiveis e garantindo uma
boa capacidade de generalizacao, mesmo quando hé poucos dados disponiveis.

Neste trabalho, sera empregado o Modelo SIR (equagao (2)). Desse modo, adotando MSE como
métrica (equagdo (3)), o residuo é calculado da seguinte forma:

1 < [ dS(t;)
MSEs =2 ; ( dt;

1 s (dI(t;) 2
MSEr =~ —— = BSE)(t:) +vI(t) ) (7)
! n ; ( dti 7 >

+ﬂ5(ti>f<ti>) : (6)

MSER = %Z <d§gi) - vl(ti)) : (8)

Assim, a loss function da PINN incorporada com o Modelo SIR é definida por:
L =MSFEpujos + MSEgsrR. (10)

Onde, o termo M SEpaq0s corresponde & equacao (3), e o termo MSFEgrr trata-se da soma das
equagoes (6), (7) e (8). Com efeito, para assegurar que as restrigoes fisicas sejam cumpridas em
todo o dominio, pontos de colocacao sdo definidos ao longo do intervalo de tempo. Esses pontos
permitem avaliar os residuos do modelo de forma continua, garantindo que as equagoes diferenciais
sejam satisfeitas em todas as regides do conjunto de treinamento [9].
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5 Testes Computacionais

Para avaliar o desempenho das redes, foram gerados dados sintéticos, livres de ruido, a partir
do Modelo SIR (equagdo (2)), simulando 51 dias de uma epidemia genérica, em um intervalo que
destaca as principais dindmicas das curvas. O conjunto de entrada corresponde as observagoes
diarias das trés subpopulagoes deste modelo. Para otimizar o treinamento, os dados foram nor-
malizados no intervalo [0, 1]. Os parametros adotados para a simulagao foram 8 = 0,3 (taxa de
contato) e v = 0,1 (taxa de recuperagao). Durante o treinamento, os dados foram divididos em
80% para o conjunto de treino e 20% para teste. Assim, a parcela destinada ao treino foi empregada
para ajustar os parametros da rede, enquanto a porgao reservada para teste serviu para avaliar o
processo.

Neste trabalho, utilizou-se a mesma arquitetura para a MLP e a PINN, permitindo a compa-
racao direta da eficdcia de ambas. As redes foram configuradas com 64 nés em 3 camadas ocultas,
1 n6 de entrada (tempo ¢) e 3 nos de saida (Modelo SIR). Em cada camada oculta, aplicou-se a
funcao de ativagao ReL U, enquanto a camada de saida utilizou a funcao Sigmoid para manter os
valores no intervalo [0,1] [6]. Foram definidas 10000 épocas, equivalentes a iteragdes tipicas dos
métodos iterativos classicos. Para evitar o superajuste na MLP e assegurar uma boa generaliza-
¢ao, implementou-se uma técnica de parada antecipada, interrompendo o treinamento se, ap6s 50
épocas, a variacdo na loss function for inferior a 1 x 10~7. Essa técnica foi omitida na PINN para
avaliar o efeito regularizador das equagoes fisicas incorporadas. O otimizador Adam [4], da biblio-
teca PyTorch, foi utilizado com taxa de aprendizado definida empiricamente como n = 2,5 x 1072
para a PINN e 7 = 5 x 10~ para a MLP, ajuste necessario para garantir a convergéncia nas duas
redes. A loss function adotada foi a MSE (equagao (3)). Destaca-se que diversas configuragdes de
arquiteturas foram testadas, sendo esta a escolhida pela sua boa performance.

Em particular para a PINN, explorou-se a sua capacidade de identificar os parametros des-
conhecidos do modelo [9]. Para tanto, os parametros do Modelo SIR foram incorporados como
variaveis treinaveis na rede, ajustadas durante a otimizagao e inicializadas como 5y = 9 = 0,01.
Além disso, assumiu-se uma distribuicdo uniforme para os dados de entrada, permitindo definir
200 pontos de colocacao igualmente espacados e contidos no interior do conjunto de treinamento.
Destaca-se que, a loss function desta rede esta definida na equacao (10).

Para avaliar a performance do modelo, os dados originais foram comparados com as saidas da
rede por meio de métricas que quantificam o erro. A Raiz do Desvio Quadratico Médio (Root
Mean Squared Deviation, RMSD), o Erro Médio Absoluto (Mean Absolute Error, MAE) e o Erro
Percentual Absoluto Médio (Mean Absolute Percentage Error, MAPE) [7].

5.1 Dados Sintéticos

A analise do desempenho ao longo das épocas revelou que a MLP convergiu apos 792 épocas,
com a loss function estabilizando nas fases finais, indicando saturac¢ao no aprendizado. Em con-
trapartida, a PINN manteve um decaimento consistente da perda, sugerindo convergéncia mais
robusta. Ambas as componentes da loss function (dados e residuo) evoluiram em sincronia, deno-
tando exercer influéncia equivalente no treinamento da PINN, embora o residuo tenha apresentado
um comportamento mais estavel. Os resultados da Tabela la evidenciam o desempenho superior da
PINN em todas as métricas de avaliagao, enquanto a Tabela 1b confirma a precisao na calibragao
dos parametros, pois assegurou que convergissem para valores muito préoximos dos verdadeiros.
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Tabela 1: Comparagao de métricas de desempenho e parametros calibrados.

RMSD MAE MAPE Calibragao  Verdadeiros
PINN 0,0045 0,0034 0,02% 8 0,3012 0,30
MLP 0,0678 0,0581 1,48% ¥ 0,0999 0,10
(a) Métricas de desempenho. (b) Parametros calibrados.

A Figura 1 compara as previsdoes da MLP e PINN para as subpopula¢ées do SIR. Ambas
foram aplicadas ao conjunto de entrada, revelando a superioridade da PINN. Embora ajustes
na arquitetura possam melhorar o desempenho da MLP, o estudo manteve ambas as redes o mais
similares possiveis para melhor anélise do impacto dos conhecimentos fisicos incorporada na PINN.
Testes com configuragoes alternativas sao propostos para trabalhos futuros.
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Figura 1: Inferéncia de cada Rede Neural. Fonte: Elaborada pelo autor.

5.2 Dados Reais

Nesta etapa, a PINN foi aplicada a um conjunto de dados referentes aos casos diarios de infec-
tados por COVID-19 na cidade de Recife, de dominio publico e obtidos em [11]. Os dados exibiam
um nivel consideravel de flutuagao, indicando um ruido elevado. Para mitigar esse problema, foi
aplicada uma spline cibica para suavizacao [8]. Além disso, devido & insuficiéncia de dados para
um treinamento eficaz, esse método foi usado para interpolar a curva suavizada e expandir o domi-
nio. Se as observagdes do conjunto original possuiam um tamanho de passo A = 1, este passou a
ser A = 0,25. A Figura 2 compara os dados originais com as curvas tratadas. Note-se que, a curva
obtida difere da curva padrao prevista pelo Modelo SIR. Como o modelo que melhor reproduz a
realidade é desconhecido, optou-se por incorporar o conhecimento fisico por meio do Modelo SIR,
escolha devida a sua robustez teérica e simplicidade interpretativa.
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Figura 2: Dados experimentais de Recife. Fonte: Elaborada pelo autor.

As estratégias de preparagao dos dados e a arquitetura dos testes anteriores foram mantidas,
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com a unica alteracao sendo a adicao de uma camada oculta. Vale destacar que os dados foram
normalizados para o treinamento. Embora os pardmetros verdadeiros do Modelo SIR no cenério
atual sejam desconhecidos, a PINN foi utilizada para identificé-los, partindo da mesma inicializa-
cao empregada anteriormente. Considerando que informagoes sobre as populagoes de suscetiveis
e recuperados nao estao disponiveis, apenas dados de infectados foram utilizados na minimizacao
da loss function. Para compensar essa limitacdo, adicionou-se um termo de penalizacdo corres-
pondente a lei de conservacao da populagao total, MSEy, (equacdo (1)), garantindo que a saida
da rede respeite essa restrigao fisica. Desse modo, a loss function é composta pela soma de trés
termos: MSFEpados, MSE; (equagdo (7)) e MSEy.

O desempenho, avaliado pelas métricas na Tabela 2, foi satisfatério, porém inferior ao obtido
com dados sintéticos, devido a complexidade inerente aos dados reais, como o ruido. Tal fator nao
estava presente no cenério controlado. Quanto a calibragao dos parametros, S e v apresentaram
uma trajetéria ruidosa mas estavel, apontando uma convergéncia adequada, obtendo 5 = 0,2104 e
~ = 0,0089. A Figura 3 ilustra a inferéncia da PINN sobre os dados de treinamento, evidenciando o
éxito da rede treinada. De fato, A PINN capturou os padroes dos dados e reproduziu com precisao
a dindmica da curva, exceto por uma diferenca na magnitude de infectados.

Tabela 2: Comparacao das métricas de desempenho.
RMSD MAE MAPE
Dados de Recife 0,0217 0,0146  0,58%
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Figura 3: Inferéncia da PINN. Fonte: Elaborada pelo autor.

0

6 Consideracgoes Finais

Neste trabalho foram comparadas duas abordagens de redes neurais aplicadas a dados epidemi-
olégicos: a MLP, baseada exclusivamente em dados, e a PINN, que incorpora algum conhecimento
fisico adquirido a priori. Os resultados demonstraram que essa integracao conferiu & PINN uma
vantagem significativa, especialmente em cenarios desafiadores com dados reais, ruidosos e escassos.
Essa abordagem é especialmente relevante em situagoes de dados limitados, como no inicio de uma
nova epidemia. Além disso, sua habilidade de inferir pardmetros desconhecidos amplia a compre-
ensdo da dinamica de doencas, possibilitando a simulacdo de cenérios diversos, agao fundamental
para a formulagao de politicas publicas.
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