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Resumo. Extrair padrões dos dados é crucial na modelagem computacional, especialmente em
epidemiologia, onde a qualidade da informação é essencial. Redes neurais – convencionais ou in-
formadas por física – são métodos poderosos para essa aproximação. Neste trabalho, utilizamos
modelos epidemiológicos, com dados sintéticos e reais, para testar estes métodos, constatando a
superioridade das redes neurais informadas por física.
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1 Introdução

A compreensão de fenômenos físicos e a capacidade de replicar seu comportamento são funda-
mentais para embasar decisões estratégicas e orientar políticas públicas eficazes. Nesse contexto,
destaca-se a epidemiologia, área dedicada à modelagem matemática da transmissão de doenças
contagiosas, cujos resultados dependem da qualidade e interpretação de dados epidemiológicos. As
informações extraídas dessas observações permitem inferir padrões de propagação de patógenos,
sendo essenciais para obter uma compreensão aprofundada sobre a dinâmica das enfermidades [2].

Diante deste desafio, as redes neurais surgem como modelos computacionais capazes de assimilar
padrões complexos nos dados e reproduzi-los precisamente [6]. Contudo, um avanço significativo
ocorre com o surgimento das redes neurais informadas por física [9]. As redes neurais convencionais
e as informadas por física têm sido amplamente utilizadas para resolver problemas epidemiológicos
[1, 5, 10].

Neste trabalho, os dois tipos de redes neurais serão aplicados a dados epidemiológicos regidos
pelo Modelo SIR [3], então, a abordagem com melhor desempenho foi aplicada a dados reais,
da doença Covid-19, para validação. O trabalho está estruturado da seguinte forma: a Seção 2
apresenta o Modelo SIR; a Seção 3 descreve o primeiro tipo de rede neural utilizada neste trabalho;
a Seção 4 introduz a rede neural informada por física; a Seção 5 detalha os testes computacionais,
divididos entre dados sintéticos e reais; e, por fim, a Seção 6 apresenta as considerações finais.

2 Modelo SIR

Os modelos epidemiológicos compartimentais baseiam-se na divisão da população em compar-
timentos distintos, fornecendo uma estrutura para analisar a propagação de doenças infecciosas
e sua evolução ao longo do tempo [2], destacando-se o Modelo SIR, desenvolvido por Kermack e
McKendrick [3]. Neste modelo se assume a hipótese que o indivíduo adquire alguma enfermidade
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e permanece infectado até desenvolver imunidade permanente. Os indivíduos são dispostos de
acordo com os estados da doença, sendo também denominados compartimentos. Convém ressaltar
que esses indivíduos integram a mesma população e não estão fisicamente isolados, o que propicia
a interação entre eles e possibilita a transição entre os compartimentos. Assim, os estados são clas-
sificados como: Suscetíveis (S), indivíduos saudáveis passíveis de infecção por contato; Infectados
(I), portadores ativos capazes de transmitir a doença; e Recuperados (R), aqueles que adquiriram
imunidade. É importante destacar que as subpopulações são funções temporais cuja soma equivale
à população total N , que é constante para qualquer tempo (t) [2]. Ou seja:

S(t) + I(t) +R(t) = N . (1)

O Modelo SIR é definido por um Sistema de Equações Diferenciais Ordinárias, descrito pela
equação (2) [2, 3]. Onde β representa a taxa de contato, medindo a transição diária de indivíduos
suscetíveis para infectados pelo contato com uma pessoa contaminada pela doença. Por sua vez,
γ é a taxa de recuperação, definida como o inverso do tempo médio de recuperação, em dias, que
indica o período em que o indivíduo permanece infectado.

dS

dt
= −βSI;

dI

dt
= βSI − γI; (2)

dR

dt
= γI.

3 Rede Multi Layer Perceptron

As Redes Neurais Artificiais são modelos de aprendizado de máquina capazes de aprender e
replicar padrões complexos a partir de observações de dados [6]. De modo geral, esses modelos
realizam o mapeamento do conjunto de entrada X para uma saída y através de um processo de
treinamento. Este processo consiste na busca do conjunto ótimo de parâmetros, denominados pesos
e viés (bias), que irá reduzir o erro entre a saída prevista e o valor verdadeiro minimizando uma
Função de Perda (Loss Function) [6]. Neste contexto, uma métrica comumente empregada para
quantificar essa discrepância é o erro médio quadrado (mean squared error, MSE), definida como:

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2 . (3)

Tal que, ŷ é a saída prevista, y é o valor verdadeiro e n é o número de observações.
Uma rede neural é definida por sua arquitetura, que irá estabelecer o número de camadas e nós,

ou neurônios, que a compõe. Inicialmente, os dados são recebidos pela camada de entrada, onde
são distribuídos e processados pelos nós, encaminhando a informação para a camada seguinte,
denominada camada oculta. Este processo é reproduzido até alcançar a camada de saída, que
consolida o treinamento, fornecendo a resposta final do modelo. Esse fluxo de dados, denominado
feedforward, ocorre de maneira unidirecional, garantindo que a informação transite da camada de
entrada até a saída sem retroalimentação. Este tipo de rede, com mais de uma camada oculta, é
denominado Multi Layer Perceptron (MLP) [6].

No decorrer do treinamento, aplica-se uma função de ativação φ em cada camada, permitindo
que a rede aprenda relações complexas nos dados e introduza não linearidade nas operações [6].
Sejam os pesos definidos como a matriz W ∈ R

nós × tam.entrada e os bias como o vetor b ∈ R
nós.
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É possível descrever a operação do feedforward em uma rede com k camadas como:

y = φk

(

W kφk−1

(

· · ·φ3

(

W 2φ1

(

W 1x+ b1

)

+ b2

)

· · ·+ bk−1

)

+ bk

)

. (4)

Então, o algoritmo Backpropagation é aplicado na equação (4) para ajustar os parâmetros da rede
minimizando a loss function L. Este algoritmo calcula, de forma automatizada, o gradiente de L

em relação aos parâmetros por meio da regra da cadeia. Os parâmetros são atualizados se movendo
na direção oposta aos gradientes, com base em uma taxa de aprendizado η, conforme descrito na
equação abaixo [6]:

ωi,j(t+ 1) = ωi,j(t)− η
∂L

∂ωi,j

. (5)

Onde, ωi,j(t) representa o valor de peso atual e ∂L
∂ωi,j

o gradiente da função de perda em relação

ao peso ωi,j(t).

4 Redes Neurais Informadas por Física

O treinamento convencional de redes neurais é essencialmente baseado em dados e ignora co-
nhecimentos adquiridos a priori, ou seja, não considera as leis físicas que governam o sistema.
Neste contexto, foram elaboradas as Redes Neurais Informadas por Física (Physics-Informed Neu-

ral Network, PINNs) [9], que incorporam ao treinamento informações provenientes de modelos
matemáticos que representam a física do problema. Assim, a PINN adiciona o resíduo de equa-
ções diferenciais à loss function, buscando minimizar a soma entre o erro proveniente dos dados
e o resíduo das equações (equação (10)). Essa integração do conhecimento físico atua como um
agente regularizador, restringindo o espaço de busca das soluções admissíveis e garantindo uma
boa capacidade de generalização, mesmo quando há poucos dados disponíveis.

Neste trabalho, será empregado o Modelo SIR (equação (2)). Desse modo, adotando MSE como
métrica (equação (3)), o resíduo é calculado da seguinte forma:

MSES =
1

n

n
∑

i=1

(

dS(ti)

dti
+ β S(ti)I(ti)

)2

; (6)

MSEI =
1

n

n
∑

i=1

(

dI(ti)

dti
− β S(ti)I(ti) + γ I(ti)

)2

; (7)

MSER =
1

n

n
∑

i=1

(

dR(ti)

dti
− γ I(ti)

)2

. (8)

(9)

Assim, a loss function da PINN incorporada com o Modelo SIR é definida por:

L = MSEDados +MSESIR. (10)

Onde, o termo MSEDados corresponde à equação (3), e o termo MSESIR trata-se da soma das
equações (6), (7) e (8). Com efeito, para assegurar que as restrições físicas sejam cumpridas em
todo o domínio, pontos de colocação são definidos ao longo do intervalo de tempo. Esses pontos
permitem avaliar os resíduos do modelo de forma contínua, garantindo que as equações diferenciais
sejam satisfeitas em todas as regiões do conjunto de treinamento [9].
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5 Testes Computacionais

Para avaliar o desempenho das redes, foram gerados dados sintéticos, livres de ruído, a partir
do Modelo SIR (equação (2)), simulando 51 dias de uma epidemia genérica, em um intervalo que
destaca as principais dinâmicas das curvas. O conjunto de entrada corresponde às observações
diárias das três subpopulações deste modelo. Para otimizar o treinamento, os dados foram nor-
malizados no intervalo [0, 1]. Os parâmetros adotados para a simulação foram β = 0, 3 (taxa de
contato) e γ = 0, 1 (taxa de recuperação). Durante o treinamento, os dados foram divididos em
80% para o conjunto de treino e 20% para teste. Assim, a parcela destinada ao treino foi empregada
para ajustar os parâmetros da rede, enquanto a porção reservada para teste serviu para avaliar o
processo.

Neste trabalho, utilizou-se a mesma arquitetura para a MLP e a PINN, permitindo a compa-
ração direta da eficácia de ambas. As redes foram configuradas com 64 nós em 3 camadas ocultas,
1 nó de entrada (tempo t) e 3 nós de saída (Modelo SIR). Em cada camada oculta, aplicou-se a
função de ativação ReLU, enquanto a camada de saída utilizou a função Sigmoid para manter os
valores no intervalo [0, 1] [6]. Foram definidas 10000 épocas, equivalentes a iterações típicas dos
métodos iterativos clássicos. Para evitar o superajuste na MLP e assegurar uma boa generaliza-
ção, implementou-se uma técnica de parada antecipada, interrompendo o treinamento se, após 50
épocas, a variação na loss function for inferior a 1× 10−7. Essa técnica foi omitida na PINN para
avaliar o efeito regularizador das equações físicas incorporadas. O otimizador Adam [4], da biblio-
teca PyTorch, foi utilizado com taxa de aprendizado definida empiricamente como η = 2, 5× 10−2

para a PINN e η = 5× 10−4 para a MLP, ajuste necessário para garantir a convergência nas duas
redes. A loss function adotada foi a MSE (equação (3)). Destaca-se que diversas configurações de
arquiteturas foram testadas, sendo esta a escolhida pela sua boa performance.

Em particular para a PINN, explorou-se a sua capacidade de identificar os parâmetros des-
conhecidos do modelo [9]. Para tanto, os parâmetros do Modelo SIR foram incorporados como
variáveis treináveis na rede, ajustadas durante a otimização e inicializadas como β0 = γ0 = 0, 01.
Além disso, assumiu-se uma distribuição uniforme para os dados de entrada, permitindo definir
200 pontos de colocação igualmente espaçados e contidos no interior do conjunto de treinamento.
Destaca-se que, a loss function desta rede está definida na equação (10).

Para avaliar a performance do modelo, os dados originais foram comparados com as saídas da
rede por meio de métricas que quantificam o erro. A Raiz do Desvio Quadrático Médio (Root

Mean Squared Deviation, RMSD), o Erro Médio Absoluto (Mean Absolute Error, MAE) e o Erro
Percentual Absoluto Médio (Mean Absolute Percentage Error, MAPE) [7].

5.1 Dados Sintéticos

A análise do desempenho ao longo das épocas revelou que a MLP convergiu após 792 épocas,
com a loss function estabilizando nas fases finais, indicando saturação no aprendizado. Em con-
trapartida, a PINN manteve um decaimento consistente da perda, sugerindo convergência mais
robusta. Ambas as componentes da loss function (dados e resíduo) evoluíram em sincronia, deno-
tando exercer influência equivalente no treinamento da PINN, embora o resíduo tenha apresentado
um comportamento mais estável. Os resultados da Tabela 1a evidenciam o desempenho superior da
PINN em todas as métricas de avaliação, enquanto a Tabela 1b confirma a precisão na calibração
dos parâmetros, pois assegurou que convergissem para valores muito próximos dos verdadeiros.
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Tabela 1: Comparação de métricas de desempenho e parâmetros calibrados.

RMSD MAE MAPE
PINN 0,0045 0,0034 0,02%
MLP 0,0678 0,0581 1,48%

(a) Métricas de desempenho.

Calibração Verdadeiros
β 0,3012 0,30
γ 0,0999 0,10

(b) Parâmetros calibrados.

A Figura 1 compara as previsões da MLP e PINN para as subpopulações do SIR. Ambas
foram aplicadas ao conjunto de entrada, revelando a superioridade da PINN. Embora ajustes
na arquitetura possam melhorar o desempenho da MLP, o estudo manteve ambas as redes o mais
similares possíveis para melhor análise do impacto dos conhecimentos físicos incorporada na PINN.
Testes com configurações alternativas são propostos para trabalhos futuros.
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Figura 1: Inferência de cada Rede Neural. Fonte: Elaborada pelo autor.

5.2 Dados Reais

Nesta etapa, a PINN foi aplicada a um conjunto de dados referentes aos casos diários de infec-
tados por COVID-19 na cidade de Recife, de domínio público e obtidos em [11]. Os dados exibiam
um nível considerável de flutuação, indicando um ruído elevado. Para mitigar esse problema, foi
aplicada uma spline cúbica para suavização [8]. Além disso, devido à insuficiência de dados para
um treinamento eficaz, esse método foi usado para interpolar a curva suavizada e expandir o domí-
nio. Se as observações do conjunto original possuíam um tamanho de passo ∆ = 1, este passou a
ser ∆ = 0, 25. A Figura 2 compara os dados originais com as curvas tratadas. Note-se que, a curva
obtida difere da curva padrão prevista pelo Modelo SIR. Como o modelo que melhor reproduz a
realidade é desconhecido, optou-se por incorporar o conhecimento físico por meio do Modelo SIR,
escolha devida a sua robustez teórica e simplicidade interpretativa.
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Figura 2: Dados experimentais de Recife. Fonte: Elaborada pelo autor.

As estratégias de preparação dos dados e a arquitetura dos testes anteriores foram mantidas,
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com a única alteração sendo a adição de uma camada oculta. Vale destacar que os dados foram
normalizados para o treinamento. Embora os parâmetros verdadeiros do Modelo SIR no cenário
atual sejam desconhecidos, a PINN foi utilizada para identificá-los, partindo da mesma inicializa-
ção empregada anteriormente. Considerando que informações sobre as populações de suscetíveis
e recuperados não estão disponíveis, apenas dados de infectados foram utilizados na minimização
da loss function. Para compensar essa limitação, adicionou-se um termo de penalização corres-
pondente à lei de conservação da população total, MSEN , (equação (1)), garantindo que a saída
da rede respeite essa restrição física. Desse modo, a loss function é composta pela soma de três
termos: MSEDados, MSEI (equação (7)) e MSEN .

O desempenho, avaliado pelas métricas na Tabela 2, foi satisfatório, porém inferior ao obtido
com dados sintéticos, devido a complexidade inerente aos dados reais, como o ruído. Tal fator não
estava presente no cenário controlado. Quanto à calibração dos parâmetros, β e γ apresentaram
uma trajetória ruidosa mas estável, apontando uma convergência adequada, obtendo β = 0, 2104 e
γ = 0, 0089. A Figura 3 ilustra a inferência da PINN sobre os dados de treinamento, evidenciando o
êxito da rede treinada. De fato, A PINN capturou os padrões dos dados e reproduziu com precisão
a dinâmica da curva, exceto por uma diferença na magnitude de infectados.

Tabela 2: Comparação das métricas de desempenho.

RMSD MAE MAPE
Dados de Recife 0,0217 0,0146 0,58%
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Figura 3: Inferência da PINN. Fonte: Elaborada pelo autor.

6 Considerações Finais

Neste trabalho foram comparadas duas abordagens de redes neurais aplicadas a dados epidemi-
ológicos: a MLP, baseada exclusivamente em dados, e a PINN, que incorpora algum conhecimento
físico adquirido a priori. Os resultados demonstraram que essa integração conferiu à PINN uma
vantagem significativa, especialmente em cenários desafiadores com dados reais, ruidosos e escassos.
Essa abordagem é especialmente relevante em situações de dados limitados, como no início de uma
nova epidemia. Além disso, sua habilidade de inferir parâmetros desconhecidos amplia a compre-
ensão da dinâmica de doenças, possibilitando a simulação de cenários diversos, ação fundamental
para a formulação de políticas públicas.
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